Главная страница
Навигация по странице:

  • Сравнительная оценка методов интенсификации добычи нефти по данным ВНИИнефти (СССР) и Института нефти (Франция)

  • Метод Способ воздействия на пласт Увеличение нефтеотдачи, %

  • 8. ОБЪЕКТЫ СБОРА И ПОДГОТОВКИ НЕФТИ

  • Устья скважин и прискважинные участки

  • Резервуарные парки и дожимные сборные пункты

  • Земляные амбары, шламонакопители и специальные площадки

  • Оценка экологической опасности вод и почв согласно Российским (санитарно-бытовым ПДК) и голландским нормативам

  • Загрязняющее вещество ПДК

  • 8.2.4. ШУМ ПРИ ФАКЕЛЬНОМ СЖИГАНИИ ГАЗА Шум

  • Шум при горении

  • 10-15

  • Вирт универ заочники 2. Экология пдк предельно допустимая концентрация, которая при действии на организм человека в течение заданного промежутка времени не вызывает необратимых (патологических) изменений в нём. Пдв


    Скачать 0.58 Mb.
    НазваниеЭкология пдк предельно допустимая концентрация, которая при действии на организм человека в течение заданного промежутка времени не вызывает необратимых (патологических) изменений в нём. Пдв
    Дата14.05.2023
    Размер0.58 Mb.
    Формат файлаdocx
    Имя файлаВирт универ заочники 2.docx
    ТипДокументы
    #1128237
    страница6 из 13
    1   2   3   4   5   6   7   8   9   ...   13

    Основными источниками загрязнения на нефтепромыслах являются эксплуатационные и нагнетательные скважины, кустовые насосные станции поддержания пластового давления.

    Сегодня большое внимание уделяется повышению нефтеотдачи коллекторов. Основным методом интенсификации является заводнение, с помощью которого в нашей стране добывается свыше 85% нефти.

    Наиболее рационально с экологических позиций применение промысловых сточных вод, позволяющее осуществить замкнутый цикл оборотного водоснабжения по схеме нагнетательная скважина - пласт - добывающая скважина - блок водоподготовки -система ППД. Использование сточных вод с целью ППД позволяет уменьшить капитальные затраты на строительство водозаборных сооружений, сократить расходы на бурение поглощающих скважин, утилизировать все нефтепромысловые воды с целью охраны окружающей среды. В результате достигается не только экологический, но и экономический эффект.

    Назначение применяемых методов заключается в повышении проницаемости призабойной зоны скважины и увеличении нефтеотдачи продуктивного пласта.

    Таблица 2

    Сравнительная оценка методов интенсификации добычи нефти по данным ВНИИнефти (СССР) и Института нефти (Франция)

    Метод

    Способ воздействия на пласт

    Увеличение нефтеотдачи, %

    ВНИИнефть

    Институт нефти

    Физический

    Внутрипластовое горение

    15-25

    20-40




    Закачка пара

    15-25

    20-40

    Физико-химический

    Углекислый газ

    5-10

    20-30




    Попутный газ

    5-10

    10-20

    Химический

    ПАВ

    2-5

    10-20




    Полимерные растворы

    2-8

    5-10




    Кислоты

    3-7

    -




    Щелочи

    2-8

    -




    Мицеллярные растворы

    8-15

    15-35


    8. ОБЪЕКТЫ СБОРА И ПОДГОТОВКИ НЕФТИ

    Однотрубная герметизированная система сбора имеет несомненные преимущества с точки зрения охраны окружающей среды.

    Применение герметизированных однотрубных систем сбора продукции скважин и блочного оборудования позволяет все процессы, связанные с выделением газа из нефти, подготовкой нефти, газа и воды, сосредоточить на установках, расположенных в одном центральном пункте.

    Система сбора нефти на промыслах является источником загрязнения водных ресурсов и почвы. Это обусловлено: а) большой протяженностью трубопроводной сети, которая достигает 100 км для среднего промысла; б) невозможностью практически предугадать место порыва коллекторов; в) невозможностью обнаружить мгновенно порывы коллекторов, особенно небольшие. В итоге объемы разлитой нефти, как правило, превышают объем остальных загрязнений.

    Внедрение герметизированных систем сбора и транспорта нефти, хотя в значительной степени и снижает вероятность коррозии оборудования и коммуникаций, однако при подготовке нефти и воды герметизация часто нарушается вследствие коррозии, что приводит к утечке нефти и пластовых вод и загрязнению тем самым объектов окружающей среды..

    Узлы промысловой подготовки нефти (газосепарация, предварительный сброс пластовой воды, блоки обезвоживания и обессоливания) и общепромысловые резервуарные парки являются конечными пунктами сбора и транспорта нефти на промыслах.

    Остатки подготовки нефти, нефтяные шламы, значительно отличаются по физико-химическим свойствам от самой нефти и требуют периодического удаления из аппаратуры, что осуществляется при чистке аппаратов и сопровождается загрязнением территории.

    Для интенсификации процессов разрушения эмульсии на установках подготовки нефти и даже в отдельные скважины дозируются поверхностно-активные вещества (ПАВ) — деэмульгаторы.

    Деэмульгаторы — химические реагенты с большой поверхностной активностью—могут быть использованы при всех способах разрушения водонефтяных эмульсий: механических (отстой, фильтрация, центрифугирование), термических (подогрев, промывка горячей водой), электрических (обработка в электрическом поле постоянного или переменного тока) и т. д.

    Деэмульгаторы — основное средство разрушения эмульсий и интенсификации любого способа разрушения эмульсий. Их применение позволяет улучшить качество товарной нефти, упростить технологический процесс, сократить время отстоя, осуществить предварительный сброс основной массы воды из эмульсии и способствует более полной очистке отделившейся воды от нефти и взвешенных частиц.

    При подготовке нефти используют анионоактивные и неионогенные ПАВ: блоксополимеры окиси этилена и пропилена, оксиэтилированные амины, СЖК, высшие жирные спирты и алкилфенолы (проксанол-305, проксамин-385, дисольван-4411, дипроксамин-157, и др.). Расход современных эффективных реагентов составляет 40—100 г/т.

    Подачу химических реагентов на практике проводят двумя способами: в разбавленном виде и впрыском концентрированного деэмульгатора.

    Основными источниками загрязнения окружающей среды при эксплуатации систем сбора и транспорта продукции скважин на нефтяных месторождениях являются следующие сооружения и объекты нефтепромыслов:

    1. Устья скважин и прискважинные участки, где разлив нефти, пластовых и сточных вод происходит из-за нарушений герметичности устьевой арматуры, а также при проведении работ по освоению скважин, капитальному и профилактическому ремонту.

    2. Трубопроводная система сбора и транспорта добытой жидкости из пласта и закачки сточных вод в нагнетательные скважины из-за неплотностей в оборудовании, промысловых нефтесборных и нагнетательных трубопроводах.

    3. Резервуарные парки и дожимные сборные пункты, где разлив добытой жидкости происходит при спуске из резервуаров сточных вод, загрязненных осадками парафино-смолистых отложений, переливах нефти через верх резервуаров.

    4. Земляные амбары, шламонакопители и специальные площадки, в которые сбрасываются осадки с резервуаров и очистных сооружений, представляющие отложения тяжелых фракций нефти, парафино-смолистых веществ и всевозможных примесей, насыщенных нефтью, нефтепродуктами и химреагентами, а также твердых минеральных примесей. В этих шламах могут содержаться до 80—85% нефти, до 50% механических примесей, до 70% минеральных солей и до 5% поверхностно-активных веществ.
    8.1. Схемы водоснабжения системы заводнения нефтяных месторождений

    На крупных нефтяных месторождениях обычно применяется внутриконтурное н законтурное заводнение. Поэтому в зависимости от системы разработки нефтяного месторождения определяется схема расположения нагнетательных скважин, магистральных водопроводов и размещение кустовых насосных станций по площади месторождения.

    В зависимости от площади нефтяного месторождения и коллекторских свойств продуктивного пласта определяется количество нагнетательных скважин, что, в свою очередь, обусловливает количество кустовых насосных станций. Большое количество нагнетательных скважин, подключаемых к одной кустовой насосной станциии, приводит к нерациональному удлинению разводящих водоводов, что ведет к необходимости применения водоводов большего диаметра, особенно при высокой приемистости скважин. При большой площади заводняемого нефтяного месторождения желательно рассредоточить водозаборные сооружения в нескольких местах.

    При использовании воды открытых русел водоемов применяются водоприемники различных типов и конструкций, представляющие собой иногда весьма сложные гидротехнические сооружения. При использовании подрусловых вод водоприемные сооружения выполняются в виде подрусловых скважин (артезианских) и водосборных галерей.

    Образующиеся сточные воды нефтепромыслов практически полностью используются или должны использоваться повторно в процессах нефтедобычи. Отрасль не относится к производству, технологические процессы которого обязательно должны приводить к загрязнению окружающей среды. Если и допускается загрязнение окружающей среды, то оно является результатом аварий, нарушения технологической дисциплины и правил охраны окружающей среды.

    Нефтепромысловые сточные воды в зависимости от химического состава обладают различной агрессивностью по отношению к металлу, бетону и др. материалам. Основными коррозионными агентами сточной воды являются растворенные соли различного состава, кислород, сероводород и др. Скорость коррозии труб и оборудования изменяется в широких пределах.

    На большинстве нефтяных месторождений способы очистки и утилизации сточных вод на промыслах предусматривают выделение основной массы нефтепродуктов и твердых примесей, содержащихся в сточных водах, в резервуарах-отстойниках.

    В зависимости от свойств сточных вод основными рекомендованными способами очистки служат следующие: механический, химический, физико-химический и биохимический (последний, к сожалению, практически не используется).

    Качество промысловых сточных вод различных нефтяных месторождений имеет чрезвычайно разнообразный характер, изменяется в широких пределах и зависит от геологических свойств месторождения нефти, времени его разработки, технической оснащенности и метода очистки стоков на очистных сооружениях.

    Основную массу сточных вод (85%) нефтепромыслов составляют пластовые (добываемые с нефтью) воды. Количество пластовой воды, отделяемой от нефти, зависит от обводненностн нефти в продуктивном пласте.

    При закачке сточных вод в нефтяные пласты под высоким давлением они могут просачиваться в верхние пресноводные горизонты по затрубному пространству обсадных колонн из-за просадки цемента или из-за некачесвенного цементажа, или по “окнам водоупорных толщ”. Все это может привести в полную негодность для употребления в хозяйственно - бытовых и питьевых целях ближайшие водоемы и питьевые колодцы.

    Нефтепромысловые сточные воды могут оказать отрицательное влияние на состояние водоснабжения населения. Обнаружено, например, что частые аварийные порывы водоводов сточных вод цехов ППД, подготовки и перекачки нефти в местах водопользования населения пос.

    Таблица 3

    Оценка экологической опасности вод и почв согласно Российским (санитарно-бытовым ПДК) и голландским нормативам

    Загрязняющее вещество

    ПДК (Россия)

    Экологический норматив (Голландия)

    Для воды, мг/л

    Для почвы, мг/кг

    Для поверхностных вод, мг/л

    Для грунтовых и подземных вод, мг/л

    Для почв и донных отложений, мг/кг

    ДДТ

    0,1

    0,1

    но**

    но/ 0,00001*

    0,0025 / 4

    Полихлорированные бифенилы

    0,0001

    но

    но

    0,00001/

    0,00001

    0,02 / 1

    Гексахлорбензол

    0,05

    0,03

    но

    0,00001/ 0,0005

    0,0025 / но

    Мышьяк

    0,05

    2,0

    0,005

    0,01 / 0,06

    29 /55

    Ртуть

    0,0005

    2,1

    0,00002

    0,00005/ 0,0003

    0,3 / 10

    Цинк

    1,0

    23,0

    0,009

    0,065 / 0,8

    140 / 720

    Хром

    0,55

    6,0

    0,005

    0,001 / 0,03

    100 /380

    Медь

    1,0

    3,0

    0,003

    0,015/ 0,075

    36 / 190

    числитель – экологический норматив,

    знаменатель – норматив санации,

    но – не определялся.
    8.2.4. ШУМ ПРИ ФАКЕЛЬНОМ СЖИГАНИИ ГАЗА

    Шум возникает при механических колебаниях в твердых, жидких и газообразных средах. Механические колебания в диапазоне частот 20-20000 Гц воспринимаются ухом человека как звук. После 6-7 ч работы при интенсивности шума 80-90 дБ нарушаются функции вегетативной нервной системы и деятельность головного мозга.

    В наших Типовых инструкциях единственное упоминание о допустимом уровне звука на рабочих местах касается работы компрессора. Сказано, что уровень звука на рабочих местах при длительной непрерывной работе компрессора не должен превышать 85 дБ.

    Снизить уровень шума, возникающий при истечении газа из трубы, можно увеличением диаметра трубы. Однако при этом увеличиваются расходы на ее монтаж и ухудшаются условия горения.

    Установлено, что уровень звука в направлении ветра, измеренный на расстоянии 4 - 9 м от трубы, изменяется следующим образом:

    Таблица 4

    Длина пламени, м

    Расход газа, м3

    Уровень звука, дБ

    27

    31

    43

    0,5

    18,4

    25,9

    94-89

    99-95

    112-108


    Фоновый шум до испытаний у основания пламени составлял 78 дБ.

    Шум при сбросе газа через факельные трубы со скоростями, превышающими скорость звука в данном газе, обусловлен расширением газа при прохождении его через регулирующий клапан и при выходе из трубы.

    Шум при горении (источник – факельная горелка, на высоких факельных установках) объясняется неравномерностью процесса горения. Неравномерность процесса горения проявляется в виде отдельных языков пламени.

    Шум возникает и при неустойчивом горении (рис.) сбрасываемого газа на факельных установках, возникающем, например, при низкой скорости потока. При низкой скорости потока происходит погружение пламени в верхнюю часть трубы и гашение его. Затем воспламеняется новая порция газа. Частота колебаний составляет 10-15 Гц. Поэтому в трубах большого диаметра следует поддерживать скорость сброса не менее 0,3-0,9 м/с, чтобы исключить такие низкочастотные колебания.

    Другим основным источником шума факельных установок является струи воды или водяного пара, подаваемые в горелку для обеспечения бездымного сжигания. Путь снижения: конструкция сопел для подачи водяного пара при минимальном перепаде давления. Шум водяного пара имеет высокую частоту.

    Зависимость общего уровня звука от скорости сброса газа: (рис.).

    • с увеличением расхода газа шум возрастает.

    Шум, создаваемый наземными факельными установками, где газ сжигается внутри трубы, приблизительно на 10 дБ меньше, чем шум высоких факельных установок той же производительности.

    Для снижения уровня шума следует по возможности стремиться увеличить время выпуска газа.

    Для снижения уровня шума на сбросные трубы устанавливают глушители.
    8.2.5. АВАРИИ НА ФАКЕЛЬНЫХ УСТАНОВКАХ

    Факельные установки характеризуются повышенной степенью опасности по сравнению с другим технологическим оборудованием. Mаксимальная опасность взрыва возникает в случае образования в факельных установках смеси горючего газа и воздуха.Если к такой смеси добавить инертный газ, то при определенном его содержании смесь становится негорючей. Количество инертного газа определяется его видом и составом горючего газа и составляет 50-75%.

    Образование взрывоопасных смесей в факельных установках связано в основном с попаданием в них кислорода воздуха. Опасность проникновения атмосферного воздуха в факельные установки возникает прежде всего при большом ветре, низкой скорости потока сбрасываемого газа и сбросе газов с относительной плотностью по воздуху меньше 1 или нагретых газов.

    Воздух в факельную систему может попасть в основном через срез факельной трубы или через неплотности при нарушении герметичности оборудования. В последнем случае подсос воздуха в установку обусловлен разрежением в факельной трубе.

    Другим фактором, обусловливающим повышенную опасность факельных установок, является постоянно горящий факел (открытый огонь).

    Для уменьшения опасности взрыва факельную систему постоянно продувают инертным или топливным газом.

    Кроме того, для ограничения распространения пламени устанавливают гидрозатворы, лабиринтные уплотнители, огнепреградители и другие устройства.

    Одной из причин аварий на факельных установках является засорение (замерзание) факельных трубопроводов. Поэтому трубопроводы следует выполнять с наклоном и без карманов.

    Во всех случаях, когда вода может попасть в систему извне (промывка, пропарка), трубопроводы должны быть проверены на отсутствие влаги. Конденсат пара (зимой) может быстро превратиться в лед. Кроме того, конденсация пара может привести к созданию разрежения в факельной системе и подсосу воздуха.

    Попадание в факельный трубопровод сырой нефти может привести к закупориванию факельной системы.

    При оценке реальной опасности следует учитывать, что взрыв невозможен, если содержание кислорода ниже так называемого кислородного предела, который зависит от состава смеси.
    1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта