Главная страница

Ответы на экзаменационные вопросы по физиологии. Экзаменационные вопросы по Физиологии 2010 год процессы происхождения биопотенциала покоя. Роль порогового раздражения в возникновении возбуждения. Особенности местного и распространяющегося процессов возбуждения


Скачать 1.5 Mb.
НазваниеЭкзаменационные вопросы по Физиологии 2010 год процессы происхождения биопотенциала покоя. Роль порогового раздражения в возникновении возбуждения. Особенности местного и распространяющегося процессов возбуждения
АнкорОтветы на экзаменационные вопросы по физиологии
Дата22.06.2022
Размер1.5 Mb.
Формат файлаpdf
Имя файлаOtvety_na_ekzamenatsionnye_voprosy_po_Fiziologii.pdf
ТипЭкзаменационные вопросы
#609596
страница14 из 21
1   ...   10   11   12   13   14   15   16   17   ...   21
Химический гемолиз происходит под воздействием жирорастворимых веществ, нарушающих фосфолипидную часть мембраны эритроцитов,— наркотических анестетиков (эфир, хлороформ), нитритов, бензола, нитроглицерина, соединений анилина, сапонинов.
Термический гемолиз возникает при неправильном хранении крови — ее замораживании и последующем быстром размораживании. Внутриклеточная кристаллизация биологической воды приводит к разрушению оболочки эритроцитов.
Внутриклеточный гемолиз. Стареющие эритроциты удаляются из циркулирующей крови и разрушаются в селезенке, печени и незначительно — в костном мозге клетками системы фагоцитирующих мононуклеотидов. Фракции IgG сыворотки содержат аутоантитела против старых эритроцитов, прикрепление которых к эритроцитам приводит к их фагоцитозу.
Внутрисосудистый гемолиз. В норме часть эритроцитов разрушается в сосудистом русле. Гемоглобин соединяется с а-гликопротеином плазмы (гаптоглобин) в необратимый комплекс, который из-за большой молекулярной массы не проходит через почечный фильтр, а подвергается быстрому ферментативному расщеплению, в основном в печени.
Скорость оседания эритроцитов (СОЭ).
Оседание эритроцитов — их свойство осаждаться на дне сосуда (капилляр), при сохранении крови в несвертывающемся состоянии в виде так называемых монетных столбиков, над которыми образуется слой прозрачной жидкости — плазмы.
Эритроциты оседают потому, что их относительная плотность больше, чем относительная плотность плазмы.
Факторы, влияющие на СОЭ.
СОЭ зависит от белкового состава плазмы, главным образом от соотношения глобулинов и альбуминов
(в норме АГ-коэффициент равен 1,5—2,3).
Клиническое значение.
Сдвиг коэффициента за счет увеличения количества глобулинов ускоряет СОЭ, что имеет место при многих патологических (воспаление, туберкулез) и некоторых физиологических (беременность) процессах.
Все белковые молекулы (фибриноген, а
(
-глобулин, аг-глобу-лин, (3-глобулин) в разной степени снижают дзета-потенциал эритроцитов — отрицательный заряд мембран, способствующий взаимному отталкиванию эритроцитов и поддержанию их во взвешенном состоянии. Наибольшее влияние оказывают фибриноген, иммуноглобулины, гаптоглобин.
Изменения СОЭ имеют большое диагностическое и прогностическое значение.

#69. Функции гемоглобина. Результаты определения содержания гемоглобина и цвета крови.
Гемоглобин является дыхательным пигментом эритроцитов, составляя до 90 % их сухой массы.
Гемоглобин — сложный белок, состоящий из собственно белковой части (глобин) и небелковой части
— простетической группы (гем), содержащей железо.
Важнейшая функция гемоглобина — связывание, перенос и высвобождение кислорода. Кроме этого, гемоглобин является главным внутриклеточным буфером, поддерживающим оптимальное для метаболизма рН.
Содержание гемоглобина в норме — 130—180 г/л. У женщин гемоглибина несколько меньше, чем у мужчин.
Свойства гемоглобина меняются в онтогенезе. Поэтому различают гемоглобин эмбриональный, гемоглобин - плода - HbF, гемоглобин взрослых - HbA. Сродство к кислороду у гемоглобина плода выше, чем у гемоглобина взрослых, что имеет существенное физиологическое значение и обеспечивает большую устойчивость организма плода к недостатку O
2
. Определение количества Г. в крови имеет важное значение для характеристики дыхательной функции крови в нормальных условиях и при самых различных заболеваниях, особенно при болезнях крови. Количество гемоглобина определяют специальными приборами – гемометрами.
В мышечной ткани содержится мышечный гемоглобин - миоглобин, по молярной массе, составу и свойствам близкий к субъединицам гемоглобина (мономерам).
Миоглобин - глобулярный белок, осуществляющий в мышцах запасание (депонирование) молекулярного кислорода и передачу его окислительным системам клеток. Миоглобин — первый белок, структура которого выяснена методом рентгеноструктурного анализа. Состоит из одной полипептидной цепи. Как и в гемоглобине, активным центром молекулы М., связывающим O
2
, является гем. По пространственной структуре миоглобин сходен с b-цепью гемоглобина. Обратимое связывание гемоглобина с O
2
происходит уже при низких парциальных давлениях кислорода PO
2
Это имеет большое физиологическое значение: при сокращении мышц PO
2
резко падает в результате сжатия капилляров; именно в этот момент происходит высвобождение из гемоглобина кислорода, необходимого работающей мышце.
Гематиновый метод (метод Сали).
Основан на превращении гемоглобина при добавлении к крови хлористоводородной кислоты в хлорид гематина коричневого цвета. В учебных целях используют гемометр Сали, состоящий из трех пробирок одинакового диаметра.
Одна (средняя) пробирка — пустая, две другие содержат стандартный раствор солянокислого гематина определенной окраски. В градуированную пробирку до нижней метки налейте 0,1 % раствор хлористоводородной кислоты. В капиллярную пипетку до линейки 0,1 наберите кровь и медленно выпускайте ее под слой кислоты. Содержимое пробирки перемешайте и оставьте на 5—10 мин. Затем полученный раствор хлорида гематина темно-коричневого цвета разведите водой до цвета стандарта, интенсивность окраски которого соответствует идеальной норме — содержанию гемоглобина 166,7 г/л
(16,67 г%). Как только цвет исследуемой жидкости полностью сравняется с цветом стандартов в гемометре Сали, отметьте, какому делению шкалы градуированной контрольной пробирки соответствует нижний мениск жидкости: это и будет искомое количество гемоглобина. В настоящее время метод считается рутинным, в клиниках применяется редко, так как существуют точные автоматические методы.
Цианметгемоглобиновый фотометрический метод является наиболее точным. Основан на превращении гемоглобина в цианмет-гемоглобин при добавлении к крови определенного количества специального реактива (раствор Драбкина). Показания фотоэлектроколориметра соответствуют определенному содержанию в крови гемоглобина.
#70. Функции разных видов лейкоцитов. Факторы, влияющие на количество лейкоцитов.
Лейкоцитарная формула и ее клиническое значение.
Форменные элементы крови. Кровь является циркулирующей по кровеносным сосудам жидкой тканью, состоящей из двух основных компонентов, — плазмы и взвешенных в ней форменных элементов — эритроцитов, лейкоцитов и кровяных пластинок (тромбоцитов). В среднем в теле человека с массой тела 70 кг содержится около 5—5,5 л крови.
Лейкоциты. Лейкоциты, или белые кровяные клетки, в свежей крови бесцветны. Число их составляет в среднем 4-9 • 10 9 л. Лейкоциты в кровяном русле и лимфе способны к активным движениям, могут переходить через стенку сосудов в соединительную ткань органов, где они выполняют основные
защитные функции. По морфологическим признакам и биологической роли лейкоциты подразделяют на две группы: зернистые лейкоциты, или гранулоциты, и незернистые лейкоциты, или агранулоциты .
У зернистых лейкоцитов выявляются специфическая зернистость (эозинофильная, базофильная или нейтрофильная) и сегментированные ядра. В соответствии с окраской специфической зернистости различают нейтрофильные, эозинофильные и базофильные гранулоциты.
Функции. Лейкоциты выполняют многообразные функции, направленные прежде всего на защиту организма от агрессивных чужеродных влияний. Одни из них обеспечивают специфический иммунитет, другие осуществляют фагоцитоз микроорганизмов и уничтожение их с помощью ферментов, третьи оказывают бактерицидное действие.
Лейкоциты выполняют также и секреторную функцию: выделяют антитела с антибактериальными и антитоксическими свойствами, ферменты — протеазы, пептидазы, диастазы, липазы и др. За счет этих веществ лейкоциты могут повышать проницаемость капилляров и даже повреждать эндотелий.
Лейкоцитарная формула. Процентное соотношение основных видов лейкоцитов называется лейкоцитарной формулой.
Гранулоциты, или зернистые лейкоциты
Агранулоциты
(незернистые)
Нейтрофильные
гранулоциты
(нейтрофилы)
Эозинофилы Базофилы Моноциты Лимфоциты
Юные
Палочкоядер
ные
Сегментояде
рные
Все виды
Все виды -
Все виды
0-0,5 %
3-5 %
65-70 %
2 -4 %
0,5-1,0 % 6-8 %
20-30 %
Гранулоциты. К гранулоцитам относятся нейтрофильные, эозинофильные и базофильные лейкоциты.
Они образуются в красном костном мозге, содержат специфическую зернистость в цитоплазме и сегментированные ядра.
Нейтрофильные гранулоциты— самая многочисленная группа лейкоцитов, составляющая 2,0—5,5 •
10 9
л крови. Их диаметр в мазке крови 10—12 мкм, а в капле свежей крови 7—9 мкм. В популяции нейтрофилов крови могут находиться клетки различной степени зрелости — юные, палочкоядерные и
сегментоядерные. В цитоплазме нейтрофилов видна зернистость.
В поверхностном слое цитоплазмы зернистость и органеллы отсутствуют. Здесь расположены гранулы гликогена, актиновые филаменты и микротрубочки, обеспечивающие образование псевдоподий для движения клетки.
Во внутренней части цитоплазмы расположены органеллы (аппарат Гольджи, гранулярный эндоплазматический ретикулум, единичные митохондрии).
В нейтрофилах можно различить два типа гранул: специфические и азурофильные, окруженные одинарной мембраной.
Основная функция нейтрофилов — фагоцитоз микроорганизмов, поэтому их называют микрофагами.
Продолжительность жизни нейтрофилов составляет 5—9 сут. Эозинофильные грамулоциты.
Количество эозинофилов в крови составляет 0,02— 0,3 • 10 9
л. Их диаметр в мазке крови 12—14 мкм, в капле свежей крови — 9—10 мкм. В цитоплазме расположены органеллы — аппарат Гольджи (около ядра), немногочисленные митохондрии, актиновые филаменты в кортексе цитоплазмы под плазмолеммой и гранулы. Среди гранул различают азурофильные (первичные) и эозинофильные
(вторичные).
Функция. Эозинофилы способствуют снижению гистамина в тканях различными путями.
Специфическая функция – антипаразитарная.
Базофильные гранулоциты. Количество базофилов в крови составляет 0—0,06 • 10 9
/л. Их диаметр в мазке крови равен 11 — 12 мкм, в капле свежей крови — около 9 мкм. В цитоплазме выявляются все виды органелл — эндоплазматическая сеть, рибосомы, аппарат Гольджи, митохондрии, актиновые фила-менты.
Функции. Базофилы опосредуют воспаление и секретируют эозинофильный хемотаксический фактор, образуют биологически активные метаболиты арахидоновой кислоты — лейкотриены, простагландины.
Продолжительность жизни. Базофилы находятся в крови около 1—2 сут.

#71. Узловые механизмы функциональной системы, поддерживающей pH крови.
Ацидоз — одна из форм нарушений кислотно-щелочного равновесия организма; характеризуется абсолютным или относительным избытком кислот, т.е. веществ, отдающих ионы водорода (протоны), по отношению к основаниям, присоединяющим их.
Алкалоз - Патологическое состояние, характеризующееся потерей кислот и избыточным накоплением щелочных соединений, в результате нарушения дыхания или нарушения метаболизма.
Буферные системы крови, их характеристики и принцип действия.
Общее понятие о буферных системах. Прежде всего необходимо вспомнить, что реакции диссоциации слабой кислоты НА на ионы водорода Н
+ и сопряженное основание А
- подчиняются закону действующих масс. Кинетику таких реакций описывает уравнение
Подобное уравнение для буферных систем, выведенное из закона действующих масс, называется
уравнением Гендерсона- Гассельбальха. Величина рK', так же как и К', -константа, характеризующая свойства системы (рК'= -lgK'). Уравнение можно представить в следующем виде:

Показателем способности системы, состоящей из слабой кислоты и сопряженного основания, создавать буферный эффект служит буферная емкость - величина, равная соотношению между количеством ионов Н
+
или ОН
+
, добавленных в раствор, и изменением рН.
Таким образом, буферная емкость раствора зависит от его концентрации и от разницы между рН и рК' этого раствора.
Бикарбонатный буфер. Из имеющихся в крови буферных систем рассмотрим прежде всего бикарбонатную систему. Она включает относительно слабую угольную кислоту, образующуюся при гидратации СО
2
, и бикарбонат в качестве сопряженного основания.
Регулируя напряжение СО
2
в крови, дыхательная система обеспечивает высокое содержание
компонентов буферной системы. Кроме того, органы дыхания вместе с бикарбонатным буфером образуют «открытую систему», в которой напряжение СО
2
(а следовательно, и рН крови) может регулироваться путем изменения вентиляции легких.
Фосфатный буфер. В фосфатной буферной системе, образованной неорганическими фосфатами крови,
роль кислоты играет одноосновный фосфат H
2
PO
4
, а роль сопряженного основания-двухосновный
фосфат НРО. Величина рК' фосфатного буфера (6,8) сравнительно близка к рН крови, однако емкость данного буфера невелика по причине низкого содержания фосфата в крови.
Белковый буфер. Буферные свойства белков крови обусловлены способностью аминокислот ионизироваться. Концевые карбокси- и аминогруппы белковых цепей играют в этом отношении незначительную роль, так как таких групп мало и их рК' существенно отличаются от рН крови.
Значительно больший вклад в создание буферной емкости белковой системы вносят боковые группы,
способные ионизироваться, и особенно имидазольнов кольцо гистидина.
К буферным белкам относятся как белки плазмы (в частности, альбумин), так и содержащийся в эритроцитах гемоглобин. На долю последнего приходится большая часть буферной емкости белковой системы, что связано как со значительной концентрацией гемоглобина, так и с относительно высоким содержанием в нем гистидина.
#72. Основные принципы классификации крови по системе AB0. Интерпретировать результаты с
помощью синтетических цоликлонов.
Группы крови. Совокупность эритроцитарных (агглютиногены) и плазменных (агглютинины) белков определяет разделение крови на группы. Из многочисленных типов классификации наиболее распространена Янского—Ландштейнера (АВО) и резус-принадлежность (Rh+ и Rh-). Открытие групп крови и Rh-фактора сделало возможным ее переливание от донора к реципиенту. Поддержание жидкого состояния крови является обязательным условием сохранения гомеостаза. Антисвертывающая система представлена совокупностью веществ, препятствующих образованию кровяного сгустка (тромб).
Фибринолитическая система обеспечивает растворение уже образовавшегося тромба.
Система классификации крови. Существуют разные виды классификации крови на группы. В основе разделения крови людей на группы в системе АВО лежит наличие в эритроцитах агглютиногенов (А,
В), а в плазме крови агглютининов (α, β). При взаимодействии одноименных агглютиногенов и агглютининов происходит реакция гемагглютинации, т. е. склеивание эритроцитов.
Изучение условий агглютинации эритроцитов привело к открытию групп крови и сделало возможным ее переливание. Агглютиногены возникают у человека еще в эмбриональном периоде развития.
Агглютинины появляются позже, и титр их в сыворотке крови у детей первых недель после рождения очень низок. В зависимости от наличия или отсутствия в эритроцитах агглютиногенов А и В различают четыре группы крови: группу I, или 0 (α, β); группу II, или А (α); группу III, или В (β); группу IV, или
АВ (в скобках указаны агглютинины). В сыворотке IV группы агглютининов α и β нет.
Определение групп крови в системе АВО. Люди используют многие методы определения крови.
Основными являются определение с помощью стандартных сывороток и с помощью синтетических цоликлонов. В настоящее время в клинике широко используют синтетические цоликлоны — растворы с аналогами агглютининов α и β. Этот метод более надежен и прост: агглютинация происходит прямо между одноименными агглютиногенами исследуемой крови и агглютининами цоликлонов.

Эритротесты цоликлон анти-А (розовый цвет) и анти-В (синий цвет) предназначены для определения групп крови человека взамен стандартных изогемагглютинирующих сывороток. Для каждого определения группы крови достаточно применять по одной серии реагентов анти-А и анти-В.
#73. Возможные причины резус конфликта между матерью и плодом. Стандартные цоликлоны
Резус-фактор. Кроме агглютиногенов, определяющих четыре названные группы крови (система АВО), эритроциты могут содержать в разных комбинациях и многие другие агглютиногены. Среди них особенно большое значение имеет резус-фактор.
Причины резус конфликта между матерью и плодом. Rh-агглютиноген (резус-фактор) не имеет в плазме "врожденных" агглютининов. Они могут вырабатываться иммунной системой резус- отрицательного реципиента при переливании ему резус-положительной крови или организмом резус- отрицательной матери, беременной резус-положительным плодом, если плацента имеет дефекты, и вследствие нарушения ее барьерных функций кровь плода и матери смешиваются. В первом случае повторное переливание резус-несовместимой крови может привести к аутоиммунному гемолизу, так как резус-антитела являются сильнейшими гемолитическими ядрами. Во втором случае, если целостность плаценты нарушена, иммунная система матери вырабатывает резус-антитела к эритроцитам плода, что может привести к частичному, а при высоком титре антител к полному, гемолизу крови плода и его внутриутробной гибели.
Метод определения резус-фактора крови. Классическая тепловая проба на водяной бане в настоящее время не проводится. В клинической лабораторной практике применяют экспресс-метод.
Наденьте перчатки. Нанесите на тарелку по одной капле контрольной сыворотки (справа — К) и стандартной антирезус сыворотки (слева — Rh). Рядом с каждой сывороткой поместите по одной капле исследуемой крови (размер капли крови должен быть вдвое меньше, чем капля сыворотки).
Последующие манипуляции должны начинаться с контрольной сыворотки, но не наоборот
1   ...   10   11   12   13   14   15   16   17   ...   21


написать администратору сайта