Главная страница

измерительные приборы. кр измер.приборы. Электрические измерительные аппараты


Скачать 378 Kb.
НазваниеЭлектрические измерительные аппараты
Анкоризмерительные приборы
Дата16.04.2022
Размер378 Kb.
Формат файлаdoc
Имя файлакр измер.приборы.doc
ТипДокументы
#478085
страница2 из 5
1   2   3   4   5
i пропорциональна тангенсу угла отклонения α:

i = k∙tgα,

где k коэффициент пропорциональности, зависящий от числа оборотов проволоки, среднего диаметра катушки и расстояния центра магнита от центра катушки. Такого рода гальванометры называются тангенс-гальванометрами. Само собой разумеется, что магнит ns может быть помещен в центре катушки. Если при отклонении магнита ns от плоскости YY мы будем поворачивать плоскость катушки так, чтобы эта плоскость всякий раз становилась параллельно оси ns магнита, то силу тока можно измерять не по углу α, а по углу поворота катушки. В таком случае сила тока будет пропорциональна синусу угла поворота катушки; гальванометр при этом получает название синус-гальванометра. Тангенс-гальванометры отличаются весьма большой чувствительностью и применяются главным образом для измерения весьма слабых токов, при чем пользуются зеркальным методом отсчета; с этой целью к магниту прикрепляют зеркальце и наблюдают, как выше было описано, перемещение отраженного изображения светового пятна на шкале. Синус-гальванометры на практике почти не употребляются. Вместо того, чтобы поворачивать рамку для совпадения ее плоскости с полюсной осью магнита, можно поступать наоборот: можно поворачивать подвижной магнит ns путем закручивания либо нити, либо пружины, на которой он подвешен, до тех пор, пока его полюсная ось не совпадет с плоскостью катушки. На этом принципе основан крутильный гальванометр Сименса. Сила тока в этом приборе измеряется углом поворота крутильного винта, служащего для закручивания нити или пружины. в) Вместо постоянного подвижного магнита можно взять мягкое железо, которое при прохождении тока через катушку, внутри которой помещается это железо, намагничивается и принимает то или другое положение, взаимодействуя с током катушки. На этом принципе устраивается весьма большое число амперметров. Для примера мы опишем принцип устройства амперметра Гуммеля, Сименса и Доливо-Добровольского. В амперметре Гуммеля подвижной частью является изогнутая железная пластинка В (фиг. 6), вращающаяся на оси и снабженная указателем i, конец которого перемещается по шкале, проградуированной на амперы.



Груз G служит для приведения указателя к нулю. При пропускании тока через обмотку ZZ железная пластинка стремится приблизиться к проволоке этой обмотки, и чем сильнее будет пропускаемый ток, тем больше будет сила, притягивающая железную пластинку к обмотке; следовательно, если сила, противодействующая этому притягиванию, будет постоянной, напр. как в данном случае сила тяжести подвижной системы, и если плечо этой силы будет увеличиваться вместе с углом поворота подвижной пластинки В, то указатель, прикрепленный к этой последней, повернется на тем больший угол, чем больше будет сила пропускаемого через обмотку ZZ тока. В амперметрах Сименса подвижной частью является железная дуга E (фиг. 7), втягиваемая обмоткой S.



К этой дуге прикреплен указатель Z; грузик g служит для приведения указателя к нулю. При пропускании тока дуга втягивается обмоткой S тем сильнее, чем больше сила тока; следовательно, при соответствующем изменении плеча (подобно предыдущему) силы тяжести подвижной системы (дуги с грузиком g) отклонение указателя Z будет тем больше, чем сильнее будет пропускаемый через обмотку S ток. Амперметр Доливо-Добровольского основан на втягивании железного стержня соленоидом: чем сильнее ток, пропускаемый через катушку (соленоид), тем сильнее будет втягиваться железный стержень, и если опять противодействие этому втягиванию будет изменяться аналогично предыдущему, то указатель, следующий за перемещением стержня, будет перемещаться тем больше, чем сильнее ток, проходящий через катушку. Все амперметры, в которых подвижною частью является мягкое железо, намагничиваемое измеряемым током, могут служить также для измерения переменного тока, ибо направление силы, отклоняющей подвижную часть, не зависит от направления тока. Действительно, когда направление измеряемого тока изменится, то изменится одновременно и направление намагничивания подвижной части, вследствие чего направление взаимодействия между этой частью и током останется то же самое.

Гальванометры второй группы, основанные на взаимодействии только токов, называются электродинамометрами и электродинамическими весами. Принцип устройства электродинамометра заключается в следующем: представим себе две рамки с намотанными на них проволоками; пусть одна рамка неподвижна, а другая может вращаться вокруг оси, проходящей через ее центр и параллельной плоскостям оборотов проволоки; рамки располагаются так, что плоскости оборотов проволоки одной перпендикулярны к плоскостям оборотов проволоки другой (фиг. 8);



пусть А — неподвижная катушка, W — подвижная; соединим обмотки этих рамок последовательно и пропустим ток; тогда подвижная катушка будет стремиться установиться параллельно плоскости неподвижной катушки; это стремление будет тем сильнее, чем больше будет пропускаемый через обмотки рамок ток: если подвижную катушку подвесить на нити или пружине S, то, закручивая эту нить или пружину, можно создать такое противодействующее усилие, которое удержало бы подвижную рамку в ее первоначальном положении: чем больше пропускаемый через обмотки ток, тем на больший угол придется закручивать подвесную нить или пружину, и, следовательно, по этому углу закручивания можно судить о силе пропускаемого через обе катушки тока. Усилие, стремящееся повернуть подвижную катушку параллельно неподвижной, пропорционально квадрату силы пропускаемого тока; противодействующее же усилие, создаваемое кручением подвеса, пропорционально углу закручивания; если, следовательно, этот последний — Θ, а сила тока — i, то мы будем иметь:

i2 = k∙Θ,

где k — коэффициент пропорциональности, зависящий от размеров рамок, числа оборотов проволоки и устройства подвеса. Отсюда мы видим, что сила измеряемого тока пропорциональна √Θ. На фиг. 9 представлен общий вид динамометра Сименса, а схема этого аппарата приведена выше (фиг. 8): подвижная катушка W состоит из одного или двух оборотов проволоки и снабжена указателем, посредством которого можно наблюдать положение этой катушки.



Подвесная пружина S закручивается, винтом R с указателем Z1, служащим для отсчета углов кручения по разделенному кругу. Подвижная обмотка W и неподвижная А соединяются между собой последовательно при посредстве зажимов 1, 2, 3 и ртутных контактов Q1, Q2 (фиг. 8 и 9). Отвес Q служит для установки катушек вертикально. Так как при одновременном изменении направления тока в обеих катушках направление взаимодействия, т. е. усилия, вращающего подвижную рамку, остается тем же самым, то, очевидно, электродинамометр может служить безразлично как для измерений постоянного, так и переменного токов. В электродинамических весах сила тока определяется путем уравновешивания взаимного притяжения двух катушек посредством груза, причем этот груз может быть постоянным и перемещается по коромыслу, подобно тому, как это делается в римских весах, или плечо коромысла остается постоянным, а меняется груз аналогично обыкновенным весам. Электродинамические весы Томсона (лорда Кельвина) основаны на принципе римских весов. Вообразим себе на коромысле АОВ две плоских катушки А и В, находящиеся между катушками А′, А″, B′, В″ (фиг. 10).



Соединим эти катушки между собой так, чтобы при прохождении по ним одного и того же тока катушка А притягивалась катушкой А′ и отталкивалась катушкой А″, катушка же В притягивалась катушкой В″ и отталкивалась катушкой В′, что будет способствовать повернуть плечо в одном и том же направлении. Перемещая подвижной грузик Q, мы можем привести коромысло снова в горизонтальное положение. Предположим, что при пропускании тока i1 нам пришлось переместить грузик от первоначального его положения или от точки опоры о на расстояние l1, а при силе тока i2 на расстояние l2; так как взаимодействие между катушками пропорционально квадрату силы тока, то при равновесии коромысла в том и другом случае мы будем иметь аналогично римским весам:

k(i1)2 = Q∙l1

k(i2)2 = Q∙l2,

где k — коэффициент пропорциональности; откуда видим, что силы измеряемых токов пропорциональны корням квадратным плеч l1 и l2:

i1/i2 = √l1/√l2

Таким образом, деления на коромысле можно проградуировать на силы токов, т. е. на амперы напр. Таков принцип весов Томсона. Весы Пелла основаны на принципе обыкновенных весов: коромысло, поддерживающее на одном конце подвижную катушку, уравновешивается на другом конце тем или другим грузом. Так, если при силе тока i1 пришлось положить груз Q1,a при силе тока i2 — Q2, то, согласно принципу весов, если l — постоянная длина плеча грузов Q1, Q2

k(i1)2 = 
1   2   3   4   5


написать администратору сайта