Главная страница

прогнозирование. F t s e где F


Скачать 183 Kb.
НазваниеF t s e где F
Анкорпрогнозирование
Дата25.04.2023
Размер183 Kb.
Формат файлаdoc
Имя файлапрогнозирование.doc
ТипДокументы
#1089550

На сегодняшний день наука достаточно далеко продвинулась в разработке технологий прогнозирования. Специалистам хорошо известны методы нейросетевого прогнозирования, нечёткой логики и т.п. Разработаны соответствующие программные пакеты, но на практике они, к сожалению, не всегда доступны рядовому пользователю, а в то же время многие из этих проблем можно достаточно успешно решать, используя методы исследования операций, в частности имитационное моделирование, теорию игр, регрессионный и трендовый анализ, реализуя эти алгоритмы в широко известном и распространённом пакете прикладных программ MS Excel.

В данной статье представлен один из возможных алгоритмов построения прогноза объёма реализации для продуктов с сезонным характером продаж. Сразу следует отметить, что перечень таких товаров гораздо шире, чем это кажется. Дело в том, что понятие “сезон” в прогнозировании применим к любым систематическим колебаниям, например, если речь идёт об изучении товарооборота в течение недели под термином “сезон” понимается один день. Кроме того, цикл колебаний может существенно отличаться (как в большую, так и в меньшую сторону) от величины один год. И если удаётся выявить величину цикла этих колебаний, то такой временной ряд можно использовать для прогнозирования с использованием аддитивных и мультипликативных моделей.

Аддитивную модель прогнозирования можно представить в виде формулы:

F = T + S + E

где: F – прогнозируемое значение; Т – тренд; S – сезонная компонента; Е – ошибка прогноза.

Применение мультипликативныхмоделей обусловлено тем, что в некоторых временных рядах значение сезонной компоненты представляет собой определенную долю трендового значения. Эти модели можно представить формулой:

F = T х S x E

На практике отличить аддитивную модель от мультипликативной можно по величине сезонной вариации. Аддитивной модели присуща практически постоянная сезонная вариация, тогда как у мультипликативной она возрастает или убывает, графически это выражается в изменении амплитуды колебания сезонного фактора, как это показано на рисунке 1.



Рис. 1. Аддитивная и мультипликативные модели прогнозирования.

Алгоритм построения прогнозной модели

Для прогнозирования объема продаж, имеющего сезонный характер, предлагается следующий алгоритм построения прогнозной модели:

1.Определяется тренд, наилучшим образом аппроксимирующий фактические данные. Существенным моментом при этом является предложение использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.

2.Вычитая из фактических значений объёмов продаж значения тренда, определяют величины сезонной компоненты и корректируют таким образом, чтобы их сумма была равна нулю.

3.Рассчитываются ошибки модели как разности между фактическими значениями и значениями модели.

4.Строится модель прогнозирования:

F = T + S ± E

где:
F
– прогнозируемое значение;
Т
– тренд;
– сезонная компонента;
Е -
 ошибка модели.

5.На основе модели строится окончательный прогноз объёма продаж. Для этого предлагается использовать методы экспоненциального сглаживания, что позволяет учесть возможное будущее изменение экономических тенденций, на основе которых построена трендовая модель. Сущность данной поправки заключается в том, что она нивелирует недостаток адаптивных моделей, а именно, позволяет быстро учесть наметившиеся новые экономические тенденции.

Fпр t = a Fф t-1 + (1-а) Fм t

где:
F
пр t - прогнозное значение объёма продаж;
F
ф t-1 – фактическое значение объёма продаж в предыдущем году;
F
м t- значение модели;
а –
константа сглаживания

Практическая реализация данного метода выявила следующие его особенности:

  • для составления прогноза необходимо точно знать величину сезона. Исследования показывают, что множество продуктов имеют сезонный характер, величина сезона при этом может быть различной и колебаться от одной недели до десяти лет и более;

  • применение полиномиального тренда вместо линейного позволяет значительно сократить ошибку модели;

  • при наличии достаточного количества данных метод даёт хорошую аппроксимацию и может быть эффективно использован при прогнозировании объема продаж в инвестиционном проектировании.

Применение алгоритма рассмотрим на следующем примере.

Исходные данные: объёмы реализации продукции за два сезона. В качестве исходной информации для прогнозирования была использована информация об объёмах сбыта мороженого “Пломбир” одной из фирм в Нижнем Новгороде. Данная статистика характеризуется тем, что значения объёма продаж имеют выраженный сезонный характер с возрастающим трендом. Исходная информация представлена в табл. 1.

Таблица 1.
Фактические объёмы реализации продукции


№п.п.

Месяц

Объем продаж (руб.)

№п.п.

Месяц

Объем продаж (руб.)

1

июль

8174,40

13

июль

8991,84

2

август

5078,33

14

август

5586,16

3

сентябрь

4507,20

15

сентябрь

4957,92

4

октябрь

2257,19

16

октябрь

2482,91

5

ноябрь

3400,69

17

ноябрь

3740,76

6

декабрь

2968,71

18

декабрь

3265,58

7

январь

2147,14

19

январь

2361,85

8

февраль

1325,56

20

февраль

1458,12

9

март

2290,95

21

март

2520,05

10

апрель

2953,34

22

апрель

3248,67

11

май

4216,28

23

май

4637,91

12

июнь

8227,569

24

июнь

9050,3264

Задача: составить прогноз продаж продукции на следующий год по месяцам.

Реализуем алгоритм построения прогнозной модели, описанный выше. Решение данной задачи рекомендуется осуществлять в среде MS Excel, что позволит существенно сократить количество расчётов и время построения модели.

1. Определяем тренд, наилучшим образом аппроксимирующий фактические данные. Для этого рекомендуется использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели).



Рис. 2. Сравнительный анализ полиномиального и линейного тренда

На рисунке показано, что полиномиальный тренд аппроксимирует фактические данные гораздо лучше, чем предлагаемый обычно в литературе линейный. Коэффициент детерминации полиномиального тренда (0,7435) гораздо выше, чем линейного (4E-05). Для расчёта тренда рекомендуется использовать опцию “Линия тренда” ППП Excel.



Рис. 3. Опция “Линии тренда”

Применение других типов тренда (логарифмический, степенной, экспоненциальный, скользящее среднее) также не даёт такого эффективного результата. Они неудовлетворительно аппроксимируют фактические значения, коэффициенты их детерминации ничтожно малы:

  • логарифмический R2 = 0,0166;

  • степенной R2 =0,0197;

  • экспоненциальный R2 =8Е-05.

2. Вычитая из фактических значений объёмов продаж значения тренда, определим величины сезонной компоненты, используя при этом пакет прикладных программ MS Excel (рис. 4).



Рис. 4. Расчёт значений сезонной компоненты в ППП MS Excel.

Таблица 2.
Расчёт значений сезонной компоненты


Месяцы

Объём продаж

Значение тренда

Сезонная компонента

1

8174,4

7617,2674

557,1326

2

5078,3296

6104,0156

-1025,686

3

4507,2061

4420,3206

86,885473

4

2257,1992

3004,1224

-746,92323

5

3400,6974

2086,745

1313,95235

6

2968,7178

1741,0644

1227,65338

7

2147,1426

1924,9246

222,217979

8

1325,5674

2519,8016

-1194,2342

9

2290,9561

3364,7154

-1073,7593

10

2953,3411

4285,39

-1332,0489

11

4216,2848

5118,6614

-902,37664

12

8227,5695

5732,1336

2495,43589

1

8991,84

7617,2674

1374,5726

2

5586,1626

6104,0156

-517,85304

3

4957,9267

4420,3206

537,60608

4

2482,9191

3004,1224

-521,20332

5

3740,7671

2086,745

1654,02209

6

3265,5896

1741,0644

1524,52515

7

2361,8568

1924,9246

436,932237

8

1458,1241

2519,8016

-1061,6775

9

2520,0517

3364,7154

-844,6637

10

3248,6752

4285,39

-1036,7148

11

4637,9132

5118,6614

-480,74817

12

9050,3264

5732,1336

3318,19284

Скорректируем значения сезонной компоненты таким образом, чтобы их сумма была равна нулю.

Таблица 3.
Расчёт средних значений сезонной компоненты


Месяцы

1-й сезон

2-й сезон

Итого

Среднее

Сезонная компонента

1

557,1326

1374,5726

1931,7052

965,8526

798,7176058

2

-1025,686

-517,853035

-1543,539

-771,7695155

-938,90451

3

86,885473

537,60608

624,491553

312,2457765

145,1107823

4

-746,92323

-521,203316

-1268,1265

-634,0632745

-801,198269

5

1313,9524

1654,022089

2967,97444

1483,987221

1316,852227

6

1227,6534

1524,525154

2752,17853

1376,089265

1208,954271

7

222,21798

436,932237

659,150216

329,575108

162,4401138

8

-1194,2342

-1061,677479

-2255,9117

-1127,955849

-1295,09084

9

-1073,7593

-844,663701

-1918,423

-959,2115055

-1126,3465

10

-1332,0489

-1036,714798

-2368,7637

-1184,381853

-1351,51685

11

-902,37664

-480,748169

-1383,1248

-691,5624065

-858,697401

12

2495,4359

3318,192838

5813,62873

2906,814363

2739,679369










Сумма

2005,61993

0

3. Рассчитываем ошибки модели как разности между фактическими значениями и значениями модели.

Таблица 4.
Расчёт ошибок


Месяц

Объём продаж

Значение модели

Отклонения

1

8174,4

8415,985006

-241,585006

2

5078,3296

5165,11109

-86,7814863

3

4507,2061

4565,431382

-58,2253093

4

2257,1992

2202,924131

54,27503571

5

3400,6974

3403,597227

-2,89987379

6

2968,7178

2950,018671

18,69910521

7

2147,1426

2087,364714

59,77786521

8

1325,5674

1224,710757

100,8566247

9

2290,9561

2238,3689

52,58718971

10

2953,3411

2933,873153

19,46793921

11

4216,2848

4259,963999

-43,6792433

12

8227,5695

8471,812969

-244,24348

13

8991,84

8415,985006

575,8549942

14

5586,1626

5165,11109

421,0514747

15

4957,9267

4565,431382

392,4952977

16

2482,9191

2202,924131

279,9949527

17

3740,7671

3403,597227

337,1698622

18

3265,5896

2950,018671

315,5708832

19

2361,8568

2087,364714

274,4921232

20

1458,1241

1224,710757

233,4133637

21

2520,0517

2238,3689

281,6827987

22

3248,6752

2933,873153

314,8020492

23

4637,9132

4259,963999

377,9492317

24

9050,3264

8471,812969

578,5134687

Находим среднеквадратическую ошибку модели (Е) по формуле:

Е= Σ О2 : Σ (T+S)2

где:
Т
- трендовое значение объёма продаж;
S
– сезонная компонента;
О
- отклонения модели от фактических значений

Е= 0,003739 или 0.37 %

Величина полученной ошибки позволяет говорить, что построенная модель хорошо аппроксимирует фактические данные, т.е. она вполне отражает экономические тенденции, определяющие объём продаж, и является предпосылкой для построения прогнозов высокого качества.

Построим модель прогнозирования:

F = T + S ± E

Построенная модель представлена графически на рис. 5.

5. На основе модели строим окончательный прогноз объёма продаж. Для смягчения влияния прошлых тенденций на достоверность прогнозной модели, предлагается сочетать трендовый анализ с экспоненциальным сглаживанием. Это позволит нивелировать недостаток адаптивных моделей, т.е. учесть наметившиеся новые экономические тенденции:

Fпр t = a Fф t-1 + (1-а) Fм t

где:
F
пр t - прогнозное значение объёма продаж;
F
ф t-1– фактическое значение объёма продаж в предыдущем году;
F
м t - значение модели;
а
 – константа сглаживания.

Константу сглаживания рекомендуется определять методом экспертных оценок, как вероятность сохранения существующей рыночной конъюнктуры, т.е. если основные характеристики изменяются / колеблются с той же скоростью / амплитудой что и прежде, значит предпосылок к изменению рыночной конъюнктуры нет, и следовательно а ® 1, если наоборот, то а ® 0.



Рис. 5. Модель прогноза объёма продаж

Таким образом, прогноз на январь третьего сезона определяется следующим образом.

Определяем прогнозное значение модели:

Fм t = 1 924,92 + 162,44 =2087 ± 7,8 (руб.)

Фактическое значение объёма продаж в предыдущем году (Fф t-1составило 2 361руб. Принимаем коэффициент сглаживания 0.8. Получим прогнозное значение объёма продаж:

Fпр t =0,8*2 361 + (1-0.8) *2087 = 2306,2 (руб.)

Для учёта новых экономических тенденций рекомендуется регулярно уточнять модель на основе мониторинга фактически полученных объёмов продаж, добавляя их или заменяя ими данные статистической базы, на основе которой строится модель.


написать администратору сайта