Торокин А. А. Основы инженерно-технической защиты информации. Факультет защиты информации кафедра инжернернотехнической защиты информации
Скачать 1.98 Mb.
|
Рис. 1.9. Графическое представление объема сигнала. Для обеспечения неискаженной передачи сообщения объемом Vс, необходимо чтобы характеристики среды распространения и непосредственно приемника соответствовали ширине спектра и динамическому диапазону сигнала. Если полоса частот среды распространения или приемника уже полосы сигнала, то для обеспечения безискаженной передачи сигнала объемом Vс уменьшают его ширину спектра. При этом для сохранения Vс=const соответственно увеличивают время передачи Тc. Для безискаженной передачи сообщения в реальном масштабе времени полоса пропускания приемника должна соответствовать ширине спектра сигнала. 1.4. Источники сигналов Объекты, излучающие поля или потоки элементарных частиц, содержат источники сигналов. Если объект отражает поля внешних источников, то он одновременно является источником информации об объекте и источником сигнала. В этом случае сигнал содержит информацию о видовых или сигнальных признаках объекта. Например, сигнал в виде отраженного от объекта света несет информацию о свойствах его поверхности. В варианте, когда на вход источника сигнала поступает первичный сигнал, например, акустическая волна от говорящего человека, то источник сигнала, переписывающий информацию одного носителя (акустической волны) на другой (электромагнитное поле) в связи называется передатчиком. К таким источникам относятся, например, передающие устройства связных радиостанций. Источники сигналов, создаваемые и применяемые для обеспечения связи между санкционированными абонентами, называют функциональными источниками сигналов. Но существует большая группа источников, от которых распространяются несанкционированные сигналы с секретной (конфиденциальной) информацией и которые возникают случайно или создаются злоумышленниками. Так как эти сигналы несут угрозу безопасности информации, то их условно называют опасными. Условность объясняется тем обстоятельством, что сигналы функциональных источников (функциональные сигналы) при приеме их злоумышленниками также небезопасны для передаваемой информации. Но, во-первых, без функциональных сигналов невозможна связь, а, следовательно, нормальная жизнь современного общества, и, во-вторых, передача информации с их помощью может контролироваться абонентами. Функциональные сигналы становятся опасными, если не приняты меры по безопасности информации. Для обеспечения целенаправленной защиты информации необходимо рассмотреть сущность источников сигналов. 1.4.1. Источники функциональных сигналов К источникам функциональных сигналов относятся: - передатчики радио и радиотехнические средств и систем; - лазерные системы связи; - излучатели акустических сигналов гидролокаторов и средств подводной связи; - условные сигналы. Средства радио и радиотехнических систем представляют наиболее многочисленную и разнообразную группу объектов, излучающих сигналы с семантической и признаковой информацией. К радиотехническим системам и средствам, передающим семантическую информацию, относятся: - средства и системы радиосвязи; - средства и системы телефонной связи; - средства телеграфной и факсимильной связи; - сети и аппаратура передачи данных; - видео- и телевизионная аппаратура; - электронно-вычислительная техника. - радиолокационные и гидролокационные станции и системы; - радионавигационные системы; - радиотелеметрические системы; - системы радиотелеуправления. Средства и системы связи предназначены для обеспечения коммуникаций между людьми, а также техническими средствами. Они занимают ведущее место в обеспечении информационного обмена во всех сферах общественно-производственной деятельности и личной жизни людей. Источники радиосигналов, излучаемых в окружающее пространство, являются радиопередающие устройства, а электрических сигналов, передаваемых по проводам, - телефонные, телеграфные, факсимильные аппараты, ЭВМ, образующие локальные сети на предприятии (организации) или выходящие во внешние сети вплоть до глобальных типа «Интернет». В последнее время для передачи информации в качестве источников сигналов применяются также лазеры. Уступая радиосигналам по дальности распространения, в особенности при неблагоприятных климатических условиях, лазерные системы имеют значительно лучшие параметры по полосе пропускания, помехоустойчивости и разрешению на местности. Радио, электрические и световые сигналы с семантической информацией могут циркулировать как внутри организации, так и распространяться на большие, в принципе, на любые расстояния. По телефону можно переговорить с абонентом в любом месте Земли, радиосигналы способны донести информацию также до любой ее точки. Учитывая широко применение средств связи и большие дальности распространения сигналов, добывание информации путем перехвата сигналов средств связи представляет один из эффективных и широко распространенных методов. Сигналы средств связи содержат информацию не только семантическую информацию, но и информацию о собственных признаках сигналов. Такая информация характеризует технические решения новых средств и их возможности, что представляет интерес как для внутреннего, так и для внешнего (зарубежного) конкурента. Средства радиолокации и гидролокации, радионавигации, радиотелеметрии, радиотелеуправления, а также радиопротиводействия относятся к радиотехническим системам. Среди радиотехнических систем и средств значительную долю занимают радиолокационные станции, предназначенные для наблюдения воздушного пространства и земной поверхности в радиодиапазоне. Возможности радиолокаторов по добыванию информации определяются в основном характеристиками сигналов и распределением их энергии в пространстве (диаграммой направленности). Так как радио- и гидролокация являются основой для противоракетной, противовоздушной и противолодочной обороны, то признаки новейших локаторов вызывают большой интерес для разведки других государств. Очевидно, что сигнальные признаки разрабатываемых радио и акустических средств интересуют также фирмы - конкуренты в России и других государств, создающих подобную технику. Радионавигационные средства и системы предназначены для определения местоположения объектов на суше, воде, в воздухе и в космосе. Радиотелеметрические средства и системы обеспечивают измерение и передачу различных физических величин удаленных объектов, а средства и системы радиотелеуправления - управления ими. К радиотехническим системам и средствам, характеристики сигналов которых интересуют органы добывания разведки, относятся также системы и средства радиопротиводействия (радиоэлектронной борьбы), предназначенные для нарушения системы управления войсками и оружием противника в военное время. Передача коротких сообщений производится также условными сигналами. В качестве сигналов могут использоваться любые объекты наблюдения, излучения и материальные тела. Необходима только договоренность между источниками и получателями информации о содержании условного сигнала. Например, условными фразами часто пользуются люди во время конфиденциального разговора по открытому телефону. 1.4.2. Побочные электромагнитные излучения и наводки Угрозу хищения информации путем ее утечки создают сигналы, случайно возникающие в результате побочных электромагнитных излучений и наводок (ПЭМИН). Эти сигналы называют также опасными. Источниками опасных для безопасности информации сигналов являются радио и электротехнические элементы и устройства в принципе любых радиоэлектронных и электрических устройств и приборов. В некоторых средствах звукозаписи, звукофикации и передачи информации предусматриваются дополнительные меры по безопасности информации, исключающие появление опасных сигналов. Однако технические меры по защите информации существенно повышают стоимость этих радиоэлектронных средств и делают их неконкурентными на рынке. Поэтому основной тенденцией предотвращения утечки информации из незащищенных радиоэлектронных средств является применение дополнительных средств защиты информации. Радиоэлектронные и электрические средства и системы, содержащие потенциальные источники опасных сигналов, разделяют на основные и вспомогательные. Основные средства и системы обеспечивают обработку, хранение и передачу защищаемой информации, вспомогательные технические средства и системы (ВТСС) - остальные. К основным средствам и системам организации относятся: - средства (телефонные аппараты, коммутационные щиты, кабели и провода) городской телефонной сети, размещенные на территории организации; - внутриобъектовая автоматическая телефонная сеть; - система оперативной телефонной связи руководства со структурными подразделениями; - система диспетчерской связи для оперативного проведения совещаний; - система громкоговорящей связи; - вычислительная техника (ПЭВМ, принтеры, сканеры, серверы); - аппаратура передачи данных; - система внутриобъектового оповещения; - система звукофикации залов заседаний и помещений для совещаний; - средства телеграфной и факсимильной связи; - система объектового промышленного телевидения; - средства аудио- и видеозаписи, используемые для документирования защищаемой информации. ВТСС включают: - городскую и объектовую радиотрансляционную сеть вещания; - систему электрочасофикации; - технические средства охранной и пожарной сигнализации; - телевизионные средства наблюдения системы охраны объекта; - бытовые аудио- видеомагнитофоны; - бытовые радиоприемники и телевизоры (без записи защищаемой информации); - средства электропитания; - бытовые электроприборы; - электронные средства оргтехники. Назначение большинства из указанных средств и систем ясно из приведенных названий и сфер применения. Естественно, что не все указанные системы и средства размещаются в любой организации, но в общем случае их количество и разнообразие достаточно для самого серьезного отношения к обеспечению безопасности информации в помещениях с ними. Несмотря на многообразие типов средств источники опасных сигналов можно классифицировать исходя из их физической природе следующим образом: - акустоэлектрические преобразователи; - излучатели низкочастотных сигналов; - излучатели высокочастотных сигналов; - паразитные связи и наводки. К акустоэлектрическим преобразователям относятся физические устройства, элементы, детали и материалы, способные под действием переменного давления акустической волны создавать эквивалентные электрические сигналы. Свойства акустоэлектрических преобразователей используются по своему функциональному назначению для создания микрофонов различных типов. Но существуют разнообразные радиоэлектронные и электрические элементы и устройства, обладающие так называемым «микрофонным эффектом», т. е. способными преобразовывать акустические сигналы в электрические. Это приводит к появлению в этих радио и электрических устройствах опасных сигналов, которые создают предпосылки для утечки информации. Классификация акустоэлектрических преобразователей, создающих опасные сигналы, приведена на рис. 1.10. Рис. 1.10. Классификация акустоэлектрических преобразователей. Электрические сигналы, модулированные акустическими сигналами, возникают в индуктивных акустоэлектрических преобразователях в результате перемещений под действием акустических волн индуктивностей (катушек с металлической проволокой) в полях (магнитных и электрических) или при изменениях геометрических размеров катушек и их сердечников. Наибольшей чувствительностью обладают электродинамические акустоэлектрические преобразователи в виде динамических головок громкоговорителей (см. рис. 1.11). Сущность преобразования состоит в следующем. Под давлением акустической волны катушка в виде картонного цилиндра с намотанной на нем тонкой проволокой перемещается в магнитном поле, создаваемом постоянным магнитом цилиндрической формы. Рис. 1.11. Схема электродинамического громкоговорителя. В соответствии с законом электромагнитной индукции в катушке (контуре) возникает электродвижущая сила (э.д.с.), величина которой пропорциональна громкости звука. Опасные сигналы на концах катушки составляют величину в 5 -15 мВ, достаточную для их распространения за пределы помещения, здания и даже территории. Поэтому не работающие, но непосредственно подключенные к радиотрансляционной сети громкоговорители или динамические головки устройств громкоговорящей связи, могут выполнять функцию микрофона и передавать информацию разговоров в помещении на достаточно большое расстояние. Аналогичный эффект возникает в электромагнитных акустоэлектрических преобразователях. К ним относятся электромагниты электромеханических звонков и капсюлей телефонных аппаратов, шаговые двигатели вторичных часов, кнопочные извещатели ручного вызова пожарной службы охраняемого объекта и др. Электрические сигналы возникают в катушках электромагнитов этих устройств в результате изменений напряженности поля при изменениях под действием акустической волны воздушного зазора между сердечником и якорем электромагнита или статора (неподвижной части) и ротора (подвижной) части электродвигателя. Перечень бытовых радио и электроприборов, в которых возникают подобные процессы и которые устанавливаются в служебных и жилых помещениях, достаточно велик. К ним относятся: телефонные аппараты с электромеханическими звонками, вторичные электрические часы системы единого времени предприятия или организации, вентиляторы и др. Уровни опасных сигналов в этих цепях зависят от конструкции конкретного типа средства и из значения имеют значительный разброс. Например, опасные сигналы, создаваемые звонковой цепью телефонного аппарата, могут достигать значений долей и единиц мВ. Магнитострикция проявляется в изменении магнитных свойств ферромагнитных веществ (электротехнической стали и сплавов) при их деформировании (растяжении, сжатии, изгибании, кручении). Такое явление называется обратным эффектом магнитострикции, в отличие от прямого, который заключается в изменении геометрических размеров и объема ферромагнитного тела при помещении его в магнитное поле. В результате магнитострикции под действием акустической волны изменяется магнитная проницаемость сердечников индуктивностей (контуров, дросселей, трансформаторов) радио и злектротехнических устройств, что приводит к эквивалентному изменению значений индуктивности и модуляции циркулирующих в устройствах сигналов. Опасные сигналы емкостных акустоэлектрических преобразователей возникают в результате механического изменения под давлением акустической волны зазоров между пластинами конденсаторов и проводами, приводящие к эквивалентному изменению значений сосредоточенных и распределенных емкостей схемы радиотехнических средств. Широко распространены акустоэлектрические преобразователи, использующие свойства некоторых кристаллических веществ (кварца, сегнетовой соли, титаната и ниобата бария и др.) создавать заряды на своей поверхности при ее деформировании, в том числе под действием акустической волны. Эти вещества применяются для создания функциональных акустоэлектрических преобразователей, например, пъезоэлектрических микрофонов. Опасные сигналы создают пьезоэлектрические вещества, в основном кварцы, применяемые в генераторах для стабилизации частоты, а также пьезоэлементы вибраторов и датчиков технических средств охраны. Опасные сигналы на выходе акустоэлектрических преобразователей вызывают два вида угроз: - распространение электрических опасных сигналов с информацией по проводам, выходящими за пределы контролируемой зоны, перехват которых злоумышленниками приведет к утечке информации; - модуляция других, более мощных электрических сигналов или полей, к которым возможен доступ злоумышленников. Техническую основу для реализации первой угрозы создают, например, неработающий громкоговоритель городской ретрансляционной сети и звонковая цепь телефонных аппаратов устаревшей конструкции, но широко применяемых в быту (ТА‑68М, ТА‑72М, ТАН‑70‑2, ТАН‑76‑3, ТА‑1146, ТА‑1162, ТА‑1164, и др.). Головка громкоговорителя непосредственно подключается к кабелю (двухжильному проводу) при приеме первой программы городской ретрансляционной сети через согласующий трансформатор, который повышает амплитуду опасных сигналов до 30-40 мВ. Сигнал такой амплитуды может распространяться по проводам ретрансляционной сети на значительные расстояния, достаточные для снятия информации злоумышленником за пределами территории организации. Однако если в радиотрансляционной сети идет передача речи или музыки, то сигналы этой передачи, имеющие существенно большую (в 100-200 раз) амплитуду и совпадающий диапазон частот, подавляют опасные сигналы. Поэтому работающие громкоговорители может быть и мешают работе людей, но исключают утечку информации из помещений с помощью акустоэлектрических преобразователей в громкоговорителях. Иная ситуация с акустоэлектрическими преобразователями в телефонных аппаратах. Телефонные линии постоянно подключены к источнику электрического тока напряжением порядка 60 В. И хотя опасные сигналы на выходе звонковой сети составляют единицы и доли мВ, их нетрудно разделить с помощью фильтра от высоковольтного напряжения постоянного тока в телефонной линии. Постоянный ток фильтр не пропускает, а опасные сигналы с речевой информацией от акустоэлектрических преобразователей с частотами в диапазоне 300-3400 Гц проходят через фильтр с малым ослаблением, а затем усиливаются до необходимого значения. Опасными сигналами на выходе акустоэлектрических преобразователей, имеющими даже весьма малые значения (доли милливольт) нельзя пренебрегать. Во-первых, чувствительность современных радиоприемников и усилителей электрических сигналов превышает в десятки и сотни раз уровни наиболее распространенных опасных сигналов, а, во-вторых, маломощные опасные сигналы могут модулировать более мощные электрические сигналы и поля и таким образом увеличивать дальность распространения. Например, если опасные сигналы попадают в цепи генераторов (гетеродинов) любого радио или телевизионного приемника, то они модулируют гармонические колебания этих генераторов по амплитуде или частоте и распространяются за пределы помещения уже в виде электромагнитной волны. Также поля опасных сигналов на выходе акустоэлектрических преобразователей, которые сами по себе из-за малой напряженности не несут большой угрозы безопасности информации, могут наводить в цепях рядом расположенных радиоэлектронных средств электрические сигналы с аналогичным эффектом. Опасные поля в виде низкочастотных полей образуются при протекании по токопроводам радиосредств (проводам индуктивностей, монтажным и соединительным проводам, дорожкам печатных плат) электрического тока в звуковом диапазоне частот с закрытой информацией. Источниками таких сигналов могут быть телефонные аппараты, устройства громкоговорящей связи, усилители мощности, бытовая радиоэлектронная аппаратура. Характер поля зависит от расстояния до его источника и длины волны . В ближней зоне, в которой расстояние от источника r поля не превышает длину волны, преобладают электрическое или магнитное поля. Поле в ближней зоне называется полем индукции. Его энергия убывает пропорционально 1/ r5. В дальней зоне, начиная с расстояния, большего примерно 6 от источника, электрическое поле принимает плоскую конфигурацию и распространяется в виде плоской волны, энергия которой делится поровну между электрической и магнитной компонентами. В этой зоне происходит излучение части энергии и перенос ее во внешнее пространство на большие расстояния. Энергия убывает значительно медленнее (в 1/r2). С ростом частоты составляющая поля индукции уменьшается в соотношении 1/f, а составляющая поля излучения возрастает в зависимости f2. Поэтому энергия полей, частоты изменения которых относятся к звуковому диапазону, сосредоточена в ближней зоне. Однако если эти поля несут информацию, то она может быть в результате наведения на проводники рядом расположенных средств или кабелей переписана на другой носитель, имеющий выход за пределы контролируемой зоны. При повышении частоты колебаний поля увеличивается энергия излучения в окружающее пространство. Источниками побочных высокочастотных колебаний являются: - высокочастотные генераторы, входящие в состав многих радиотехнических средств (телевизоров, радиоприемников, аудио- и видеомагнитофонов, 3‑х программных абонентных громкоговорителей); - усилительные каскады, в которых при определенных условиях возникают паразитные высокочастотные колебания; - нелинейные элементы (диоды, транзисторы и другие активные радиоэлементы), на которые подаются гармонические высокочастотные колебания и электрические сигналы с речевой информацией. Высокочастотные генераторы выполняют в радиотехнических приемниках функции генераторов гармонических колебаний, необходимых для преобразования частоты, в магнитофонах они создают токи стирания и подмагничивания. Колебания этих генераторов в результате акустоэлектрических преобразований в их элементах (индуктивностях, емкостях) или воздействий на генераторы электрических сигналов с информацией, могут быть промодулированы речевыми сигналами и излучаться в окружающее пространство. Например, если под действием акустической волны меняются параметры контура генератора, то происходит частотная модуляции колебаний. Паразитные высокочастотные колебания в усилителях возникают при образовании между выходом и входом усилителя положительной обратной связи. При попадании через паразитные емкостные и индуктивные связи на вход усилителя сигналов с его выхода с фазой, равной фазе входного сигнала, лавинообразно нарастает амплитуда паразитного колебания на частоте, на которой выполняется равенство фаз. Если частота паразитной генерации расположена вне диапазона частот усилителя, то этот побочный режим работы усилителя может остаться незамеченным при создании и эксплуатации радиоэлектронного средства. Модуляция паразитного колебания происходит аналогично рассмотренным выше способам модуляции функциональных генераторов. Высокочастотные колебания генерируются не только функциональными или паразитными генераторами радиоэлектронных средств, но высокочастотные колебания могут быть подведены к ним злоумышленником от внешнего генератора. При одновременном попадании этих высокочастотных колебаний и сигналов с речевой информацией на нелинейные элементы средств (диоды, транзисторы и др.) происходит модуляция высокочастотного колебания речевым сигналом. Наиболее просто этот вариант реализуется при подключении внешнего высокочастотного колебания к проводам телефонного аппарата, установленного в интересующем злоумышленника помещении. Промодулированные высокочастотные колебания распространяются в окружающее пространство и могут быть приняты за пределами территории организации. Многочисленные опасные сигналы создают работающие ПЭВМ, в особенности в пластмассовых неметаллизированных корпусах. Ориентировочные дальности обнаружения радиоизлучений широко распространенных ПЭВМ зарубежного производства приведены в табл. 1.3. Таблица 1.3.
Наиболее мощными источниками электромагнитного излучения являются видеоусилитель и электронно-лучевая трубка монитора. Излучения компьютеров имеют широкий диапазон: от единиц до сотен Мгц. Паразитные связи и наводки характерны для любых радиоэлектронных средств и проводов соединяющих их кабелей. Различают три вида паразитных связей: - гальваническая; - индуктивная; - емкостная. Гальваническая связь или связь через сопротивление возникает, когда по одним и тем же цепям протекают токи разных источников сигналов. В этом случае наблюдается проникновение сигналов в непредназначенные для них элементы схемы. Сигналы, несущие конфиденциальную информацию, за счет гальванической связи могут проникать в цепи, имеющие внешний выход. Это создает предпосылки для утечки информации. К опасным в этом отношении цепям относятся, прежде всего, цепи питания и заземления. Цепи электропитания обеспечивают передачу электрической энергии от внешних источников (подстанций) подавляющему большинству устанавливаемых в помещениях радио и электрических приборов в виде переменного электрического тока напряжением 220 В и частотой 50 Гц. В любом радиотехническом изделии имеется собственный блок (узел) питания, который преобразует напряжение 220 В переменного тока в требуемые для нормальной работы прибора значения напряжения постоянного и переменного тока. Например, для питания всех устройств ПЭВМ его блок питания формирует напряжения +5, -5, -12, +12 В постоянного тока. Функциональный или опасный сигнал может при определенных условиях проникать через цепи питания прибора в сеть электропитания помещения и здания, далее через силовой щит в силовой кабель, по которому подается электроэнергия с подстанции. Кроме того, потребление энергии любым радиоэлектронным средством в текущий момент времени зависит от амплитуды токов, циркулирующих в нем, в том числе токов, несущих полезную информацию. Следовательно, ток, потребляемый средством может содержать переменную составляющую, соответствующую информационному сигналу. Различие в частотах питающего напряжения 50 Гц и сигнала в диапазоне частот речи позволяет в принципе выделить с помощью частотных фильтров опасный сигнал чрезвычайно малой амплитуды на фоне напряжения 220 В. Хотя блок питания сглаживает колебания тока в сети электропитания, вызванные циркулирующими в технических средствах информационными сигналами, но существует реальная возможность утечки информации через цепи питания от звукоусиливающей аппаратуры. Цепи заземления предназначены для обеспечения защиты электрических сигналов с информацией от помех и наводок путем экранирования проводов или устройств. При воздействии на экраны побочных электрических и электромагнитных полей на последних возникают заряды, которые для эффективного экранирования необходимо удалять или нейтрализовать. С этой целью экраны “заземляют”, т. е. соединяют проводом с малым сопротивлением с поверхностью Земли. В качестве “земли” применяют металлические листы или трубы, зарытые в грунт земли на глубину 1-2 м для обеспечения хорошего контакта с токопроводящими слоями. Протекающие по цепи заземления опасные сигналы могут перехвачены приемной аппаратурой злоумышленника. Паразитные индуктивные и емкостные связи представляют собой физические факторы, характеризующие влияние электрических и магнитных полей, возникающих в одних цепях любого функционирующего радиоэлектронного средства, на другие в этом или иных средствах. Паразитная индуктивная связь проявляется в ходе следующих физических процессов. В пространстве, окружающем любую цепь, по которой протекает электрический ток I, возникает магнитное поле, постоянное или переменное c частотой (в соответствии с характером тока. В соседних проводниках, находящихся в переменном магнитном поле, возбуждаются переменные э.д.с. Е=IМ, где М - взаимная индуктивность. Величина М пропорционально индуктивности влияющих друг на друга элементов цепей и обратно пропорциональна расстояния между ними. Например, взаимоиндуктивность двух медных прямых параллельных проводников длиной 100 мм и толщиной 0.02 мм при интервале между ними 2 мм составляет 0.07 мкГн, а при интервале 10 мм - 0.04 мкГн. Емкостная паразитная связь возникает между любыми элементами схемы, прежде всего, между параллельно расположенными проводами, а также точками схемы и корпусом (шасси). Емкостная связь зависит от геометрических размеров элементов цепей и расстояния между ними. Например, емкость между двумя параллельными проводами длиной 100 мм и диаметром 0.1 мм уменьшается с 0.75 пф до 0.04 пф при увеличении расстояния между ними с 2 до 50 мм. Для проводов диаметром 2 мм эта емкость при тех же условиях снижается с 5 пф до 0.07 пф. Из-за паразитных индуктивных и емкостных связей возникают паразитные наводки. Под паразитной наводкой понимается передача напряжения из одного элемента радиоустройства в другой, не предусмотренная его схемой и конструкцией [46]. Принципы паразитной наводки иллюстрируются рис. 1.12. Рис. 1.12. Принципы паразитной наводки Когда ток проходит по проводам (жилам) первой цепи (Ц1), вокруг них создается электрическое поле, силовые линии которого пронизывают провода (жилы) второй цепи (Ц2). Аналогичная схема магнитного влияния между цепями. В результате этого по цепи Ц2 потечет помимо основного еще и переходной ток, создающий помеху основному. Защищенность от взаимных помех оценивается так называемым переходным затуханием Z12 = 10lgPс1/Pн2, где P1 и Pн2 - мощность сигналов в 1-й цепи и наводки от них во 2-й цепи. Переходное затухание для надежной защиты информации должно быть не менее величины 10lgPс/Pпр, где Pc и Pпр - мощность сигнала с информацией и чувствительность приемника злоумышленника, перехватывающего наведенный сигнал. Наводки создают угрозу безопасности информации в случае наводок на цепи, имеющие выход сигналов с подлежащей защите информацией за пределы территории организации. В этом отношении наибольшую угрозу создают наводки в проводах кабелей городской телефонной сети, радиотрансляции, электропитания от сигналов рядом расположенных кабелей внутренней АТС, звукофикации залов или помещений для совещаний, оперативной и диспетчерской связи. Кроме того, наводки даже очень малого уровня могут модулировать высокочастотный сигнал, распространяющийся за пределы организации в виде электромагнитной волны. |