Физиология как наука
Скачать 231.5 Kb.
|
Физиология как наука… Физиология - это наука о жизнедеятельности человеческого организма, о деятельности его отдельных органов и систем органов. Физиология изучает функции и процессы, протекающие в организме, отдельных органах и системах органов, механизмы их формирования, реализации и регуляции. Под функциями понимают проявление специфической деятельности органа, системы органов или организма в целом. Физиология изучает процессы – т.е. динамику явлений, состояний во времени и пространстве. Физиология относится к разряду фундаментальных наук. А это значит, что физиология изучает законы жизнедеятельности. Это значит, что она изучает наиболее важные взаимосвязи в живой материи. Она является базой для целой группы биологических прикладных наук, а именно - патологической физиологии, фармакологии. Физиологию определяют как теоретическую основу медицины. Во-первых, это обусловлено тем, что физиология изучает процессы нормальной жизнедеятельности. Предметом интереса медицины являются болезни - больной человек и болезни. Чтобы понять отклонение, надо понимать нормальное течение процессов. Во-вторых, физиология дает нормы для медицины, т.е. параметры нормальной деятельности органов и систем органов. В-третьих, физиология дает методы оценки функций, т.е. она дает медицине практические методы диагностики. Для нормальной жизнедеятельности необходимо выполнение трех условий: 1-ое условие нормальной жизнедеятельности - постоянство внутренней среды. 2-ое - постоянный обмен внутренней среды организма веществом, энергией и информацией со средой окружения, внешней средой. Из биофизики известно - человеческий организм - открытая система. Следовательно, ОБМЕН ИДЕТ В ОБЕ СТОРОНЫ: и туда и обратно. Значение обмена веществ. Если, например, прекратить поступление в организм пищи /обмен веществом/ - человек расстанется с жизнью через 20 дней, а не потребляя воду - на 8-ой день. То же самое будет при задержке в организме метаболитов. Природные эксперименты - нефрит, повреждение почек, острая почечная недостаточность - уремия - накопление азотистых шлаков. Значение обмена энергии. С пищей в организм поступают не только питательные вещества, но и вещества, обеспечивающие организм энергией, В питательных веществах аккумулирована энергия Солнца /фотосинтез/, которая нам необходима для обеспечения жизнедеятельности, Несколько слов об обмене информацией. Имеет такое же значение, как и обмен веществ и энергии. Особую роль эта проблема приобрела с развитием космонавтики, подводных работ и т.д. Так, акад. Газенко открыл спец. НИИ около аэропорта Шереметьево - там есть спец. камеры, изолирующие человека от окружающей среды. Однако, при полном жизнеобеспечении в них нет ни радио, ни телевидения, ни прочей поступающей извне информации. При выходе из такой камеры у человека могут наблюдаться психические отклонения. На этом основаны эксперименты с камерами, куда помещали человека с логореей (патологическое желание побеседовать с кем-либо), откуда человек выходит больным. 3-ий принцип жизнедеятельности, нарушение которого несовместимо с жизнью - Адекватное приспособление организма к изменяющимся условиям внешней среды или среды обитания. Условия среды, в которых обитает человек, постоянно изменяются. Окружающая среда у человека изменяется намного интенсивнее, чем у животных, т.к. человек - существо биосоциальное и, кроме физических факторов, которые на него воздействуют (климатических и др.), у человека есть проблемы общения с ему подобными, и это тоже требует постоянного приспособления. Кроме того, человек должен приспосабливаться к техногенной среде (в отличие от животных), т.е. к среде, которую он сам создал. Человек должен не просто приспосабливаться, а приспосабливаться адекватно, биологически разумно, к изменяющимся условиям окружающей среды. Если он приспосабливается не адекватно, то это тоже несовместимо с жизнью. 2. Внутренняя среда организма… Под внутренней средой организма понимают ту среду, которая непосредственно не сообщается с окружающей средой и является микроокружением клеток человеческого организма, т.е. микроокружением клеток. Истинной внутренней средой организма является межклеточная жидкость. Итак, внутренняя среда не сообщается непосредственно с внешней. Внутренняя среда – это среда, в которой непосредственно живут клетки организма, т.е. межклеточная жидкость. Еще в 18-м веке знаменитый французский физиолог Клод Бернар сформулировал понятие "гомеостаз" - постоянство внутренней среды организма. Он первым сформулировал понятие постоянства внутренней среды как основное условие нормальной жизнедеятельности организма. Отклонение от этого часто бывает несовместимо с жизнью. Врачу трудно исследовать непосредственно истинную внутреннюю среду организма. Поэтому, в понятие "внутренней среды" правильно включают, наряду с межклеточной жидкостью, еще кровь и лимфу. Это - не истинная внутренняя среда организма: в крови не живут собственные клетки организма. Изменение состава межклеточной жидкости всегда отражается на составе и свойствах крови. Кровь – зеркало внутренней среды организма. Поэтому врачи, исследуя кровь, проводят оценку внутренней среды организма. Постоянство внутренней среды организма предстает перед врачом в виде нормативных показателей - констант - постоянных показателей. Константы отражают норму, нормальное значение. Константы внутренней среды организма делятся на: жесткие и пластичные. Жесткие константы - это такие константы, которые могут отклоняться от нормы, от своего исходного уровня в процессе жизнедеятельности на небольшую величину (т.е. колебания есть, так как человек живет, но лишь на небольшую величину). Существенное отклонение жестких констант от своей исходной величины не совместимо с жизнью. (Пример: рН крови)/ Пластичные константы - это тоже постоянные константы, но которые в процессе жизнедеятельности колеблются в значительном диапазоне величин. Однако и при значительном колебании это совместимо с жизнью. правда и у пластичных констант существуют пределы, выход за которые несовместим с жизнью. Пример: артериальное давление. Гистогематические барьеры - это клеточные образования (стенки кровеносных сосудов, стенки органа), которые обладают избирательной проницаемостью по отношению к различным веществам. Все гистогематические барьеры можно разделить на 3 группы: 1. Изолирующие гистогематические барьеры. К ним относятся: гематоэнцефалический гематоликворный гематонейрональный гематотестикулярный гематоофтальмологический. 2. Частично-изолирующие барьеры. Они имеются на уровне желчных капилляров, коры надпочечников, щитовидной железы, концевых долек поджелудочной железы. У частично-изолирующих барьеров избирательная проницаемость значительно более широкая, чем у изолирующих барьеров. Они не пропускают лишь крупные белковые молекулы. Более мелкие вещества - типа пептидов, ионов - эти барьеры пропускают. 3. Неизолирующие барьеры. Они пропускают всё, но в ограниченном количестве, т.е. они ограничивают количественно. Существуют и исключения: так, например, есть участки мозга, где гематоэнцефалический барьер отсутствует. Так, в гипоталамусе практически нет гематоэнцефалического барьера - там все проходит, но здесь располагается огромное количество воспринимающих структур, которые воспринимают имеющиеся концентрации различных веществ. Итак, гистогематические барьеры охраняют внутреннюю среду организма, т.е. обладают защитной функцией (защищая организм) и регулирующей функцией (управления по отношению к внутренней среде организма). Приспособление к среде обитания, как важнейшее условие жизнедеятельности. Срочная и долговременная адаптация. Адаптация - процесс приспособления организма к изменяющимся условиям среды обитания. Он позволяет человеку постоянно приспосабливаться к новым климатическим и техногенным условиям среды, к новым социальным ситуациям. Процесс адаптации обеспечивается компенсаторными механизмами, большая часть из которых врожденная (безусловные рефлексы, инстинкты, миогенные механизмы регуляции, врожденный, видовой иммунитет и неспецифические механизмы защиты от инфекционных и неинфекционных факторов (оболочка тела, фагоцитоз и др.)), а часть приобретенная (условные рефлексы, динамические стереотипы и др.). Компенсаторные механизмы - составная часть резервных сил организма. Способность адаптироваться обозначается термином адаптивность. Мерой адаптации является степень адаптированности. Человек обладает устойчивостью (резистентностью) по отношению действия широкого спектра экстремальных факторов. В процессе адаптации формируется повышение устойчивости (резистентности) к действующему фактору. Резистентность бывает специфической и неспецифической. Специфическая резистентность - это устойчивость к определенному фактору. Неспецифическая (перекрестная) резистентность - устойчивость не только к данному, но и ряду других факторов. Если факторы среды количественно превышают адаптивные возможности организма, то развивается явление дисадаптации, которая при достаточной продолжительности вызывает развитие дисфункции, то есть нарушение функции, и может стать необратимой. При благоприятном стечении обстоятельств (прекращении действия сверхсильного фактора или снижении его силы и интенсивности до уровня физиологического диапозона действия) возможна деадаптация. Организм всегда оставляет след от неблагоприятного воздействия (вегетативная память), что облегчает приспособление при повторной адаптации (реадаптация). Развитие адаптации к неблагоприятным факторам может идти по пассивному пути по типу толерантности (зимняя спячка животных, снижение теплопродукции и т.д.) и по активному пути (повышение теплопродукции при снижении температуры окружающей среды - человек). Это пример двух стратегий адаптации. Срочная и долговременная адаптация Срочная и долговременная адаптация возникает при действии сильных раздражителей, многие из которых действовали на организм ранее, имея другие показатели силы. Срочная и долговременная адаптация преимущественно осуществляется за счет повышения специфической резистентности, хотя частично в этих процессах принимает участие и изменение неспецифической резистентности. Срочная адаптация. При воздействии сильного раздражителя ответная реакция формируется за счет вовлечения в процесс адаптации ранее сформированных приспособительных механизмов по действием раздражителей умеренной силы. Это требует мобилизации всех резервов организма. При срочной адаптации ответ на сильный раздражитель энергозатратен, и поэтому при неблагоприятном развитии событий для дополнительного энергообеспечения частично подвергаются разрушению важнейшие белковые и углеводные структуры, что может нарушить структуру тканей. Если сильный раздражитель действует многократно, то возникает долговременная адаптация. Долговременная адаптация возникает постепенно, за счет морфогенетических и биосинтетических процессов формируются специальные дополнительные механизмы, которые обеспечивают дополнительные возможности формирования ответной реакции организма на сильный раздражитель. Энергозатраты на формирование реакции постепенно приходят в соответствие с возможностями организма. Все механизмы, обеспечивающие долговременную адаптацию, формируют так называемый структурный след. Он возникает на 10-12 действие раздражителя и формируется в разных физиологических системах. Прежде всего они формируются в физиологических системах, наиболее интенсивно принимающих участие в формировании ответной реакции. 4. Функции клеток… Клетка является структурно-функциональной единицей всех живых организмов. Она обладает следующими основными физиологическими свойствами. 1 .Раздражимость - способность клетки отвечать на раздражение изменением своего обмена веществ. Это некоторое общее свойство, присущее только живой материи - только живой клетке. 2. Возбудимость - это способность клетки отвечать на раздражение изменением проницаемости клеточной мембраны, входящим натриевым током и, как следствие, генерацией потенциала действия - т. е. процессом возбуждения. 3. Проводимость - это способность клетки проводить, распространять возбуждение от места его возникновения в клетке к другим ее частям. Если у клетки утрачена раздражимость, возбудимость или проводимость, то она или функционально нарушена, либо погибла, т. е. в ней отсутствует жизнь. 4. Сократимость как свойство присуще поперечно-полосатым, гладким мышцам, кроме того сократимость присуща и другим - немышечным клеткам, в которых есть сократительные элементы). Сократимость - это способность клетки под действием раздражителя изменять свою длину и/или напряжение цитоскелета клеток. 5.Строение биомембран Организация всех мембран имеет много общего, они построены по одному и тому же принципу. Основу мембраны составляет липидный бислой (двойной слой амфифильных липидов), которые имеют гидрофильную "головку" и два гидрофобных "хвоста". В липидном слое липидные молекулы пространственно ориентированы, обращены друг к другу гидрофобными "хвостами", головки молекул обращены на наружную и внутреннюю поверхности мембраны. Среди мембранных белков выделяют: • периферические - располагаются на наружной или внутренней поверхностях билипидного слоя; на наружной поверхности к ним относятся рецепторные белки, белки адгезии; на внутренней поверхности - белки систем вторичных посредников, ферменты; • интегральные - частично погружены в липидный слой. К ним относятся рецепторные белки, белки адгезии; • трансмембранные - пронизывают всю толщу мембраны, причем некоторые белки проходят через мембрану один раз, а другие - многократно. Этот вид мембранных белков формирует поры, ионные каналы и насосы, белки-переносчики, рецепторные белки. Трансмембранные белки играют ведущую роль во взаимодействии клетки с окружающей средой, обеспечивая рецепцию сигнала, проведение его в клетку, усиления на всех этапах распространения. В мембране этот тип белков формирует домены (субъединицы), которые обеспечивают выполнение трансмембранными белками важнейших функций. Основу доменов составляют трансмембранные сегменты, образованные неполярными аминокислотными остатками, закрученными в виде ос-спирали и внемембранные петли, представляющие полярные области белков, которые могут достаточно далеко выступать за пределы билипидного слоя мембраны (обозначают как внутриклеточные, внеклеточные сегменты), отдельно выделяют СООН- и NН2-терминальные части домена. Часто просто выделяют трансмембранную, вне- и внутриклеточную части домена - субъединицы. Белки мембраны также делят на: структурные белки: придают мембране форму, ряд механических свойств (эластичность и т.д.); транспортные белки: формируют транспортные потоки (ионные каналы и насосы, белки-переносчики); способствуют созданию трансмембранного потенциала. белки, обеспечивающие межклеточные взаимодействия: - адгезивные белки, связывают клетки друг с другом или с внеклеточными структурами; белковые структуры, участвующие в образовании специализированных межклеточных контактов (десмосомы, нексусы и т.д.); белки, непосредственно участвующие в передаче сигналов от одной клетки к другой. В состав мембраны входят углеводы в виде гликолипидов и гликопротеидов. Они формируют олигосахаридные цепи, которые располагаются на наружной поверхности мембраны. Свойства мембраны: 1. Самосборка в водном растворе. 2. Замыкание (самосшивание, замкнутость). Липидный слой всегда замыкается сам на себя с образованием полностью отграниченных отсеков. Это обеспечивает самосшивание при повреждении мембраны. 3. Асимметрия (поперечная) - наружный и внутренний слои мембраны отличаются по составу. 4. Жидкостность (подвижность) мембраны. Липиды и белки могут при определенных условиях перемещаться в своем слое: латеральная подвижность; вращения; изгибание, а также переходить в другой слой: вертикальные перемещения (флип-флоп) 5. Полупроницаемость (избирательная проницаемость, селективность) для конкретных веществ. 6. Трансмембранный обмен… Осуществляется за счет 2-х процессов: -диффузии и осмоса. Осмос - когда через мембрану движется растворитель из зоны с меньшей концентрацией в зону с большей концентрацией. Осмос поддерживает объем и форму клетки. Диффузия - процесс проникновения веществ, растворимых в воде, по градиенту концентрации. Движущая сила при этом - разность концентраций. Простая диффузия осуществляется либо через поры, которые есть в гидрофильных участках мембраны (фенестры, окна), либо через кинки - постоянно образующиеся временные дефекты мембраны. Простая диффузия не требует энергетических затрат, происходит за счет разности концентраций и осуществляется периодически, когда возникает разная концентрация. Облегченная диффузия – ускоряет и усиливает перенос из зоны с большей концентрацией в зону с меньшей концентрацией по сравнению с простой диффузией. Она широко распространена в организме, так как хотя и сопровождается дополнительными энергетическими затратами, но не приводит к серьезным затратам энергии. Облегченная диффузия - осуществляется за счет специфических переносчиков, создает условия для транспорта натрия, калия, хлора, моносахаридов, т.е. для некрупных молекул. Различают 2 вида переносчиков: 1.Переносчики - белки, которые тем или иным способом переносят вещества через мембрану – за счет конформации (пространственного преобразования) молекул переносчика (сальтообразно). 2.Белки, которые образуют постоянные каналы, диаметр 0,3-0,6 нм, (так переносятся ионы натрия, калия, хлора). Активный транспорт - транспорт веществ через мембрану, который осуществляется против градиента концентрации итребует значительных затрат энергии. Одна треть основного обмена тратиться на активный транспорт. Активный транспорт бывает: 1. Первично-активый - такой транспорт, для обеспечения которого используется энергия макроэргов - АТФ, ГТФ, креатинфосфат. Например: Калиево-натриевый насос - важная роль в процессах возбудимости в клетке. Он вмонтирован в мембрану. Калиево-натриевый насос - фермент калий-натриевая АТФаза. Этот фермент - белок. Он существует в мембране в виде 2-х форм: -Е 1, Е 2 В ферментах существует активный участок, который взаимодействует с калием и с натрием. Когда фермент находится в форме Е 1, его активный участок обращен внутрь клетки и обладает высоким сродством к натрию, а значит способствует его присоединению (3 атома Na). Как только натрий присоединяется, происходит конформация этого белка, которая перемещает 3 атома натрия через мембрану и с наружной поверхности мембраны натрий отсоединяется. При этом происходит переход фермента из формы Е 1 в Е 2. Е 2 имеет активный участок, обращенный к наружной поверхности клетки, обладает высоким сродством к калию. При этом 2 атома К присоединяется к активному участку фермента, изменяется конформация белка и калий перемещается внутрь клетки. Это происходит с большой затратой энергии, так как фермент АТФаза постоянно расщепляет энергию АТФ. 2. Вторично-активный - это транспорт, который осуществляется тоже против градиента концентрации, но на это перемещение тратится не энергия макроэргов, а энергия электрохимических процессов, которая возникает при движении каких-либо веществ через мембрану при первично-активном транспорте. Например: Сопряженный транспорт натрия и глюкозы, энергия - за счет перемещения натрия в калиево-натриевом насосе. Классическим примером вторично-активного транспорта выступает натрий – Н (аш)-обменник - когда обмениваются натрий и водород (это тоже вторично-активный транспорт). Способы транспортировки через мембрану: 1. Унипорт - это такой вид транспорта веществ через мембрану, когда переносчиком или каналом транспортируется одно вещество (Na-каналы) 2. Симпорт - это такой вид транспорта, когда 2 или более веществ в своем транспорте через мембрану взаимосвязаны и транспортируются вместе в одном направлении. (Na и глюкоза - в клетку) Это вид сопряженного транспорта 3. Антипорт - такой сопряжённый вид транспорта, когда его участники друг без друга не могут транспортироваться, но потоки идут навстречу друг другу (К-Na-насос-активный вид транспорта). Эндоцитоз, экзоцитоз - как формы транспорта веществ через мембрану. 7. Ионные каналы… Ионный канал состоит из нескольких субъединиц, их количество в отдельном ионном канале составляет от 3 до 12 субъединиц. По своей организации субъединицы, входящие в канал, могут быть гомологичными (однотипными), ряд каналов сформирован разнотипными субъединицами. Каждая из субъединиц состоит из нескольких (три и более) трансмембранных сегментов (неполярные части, закрученные в α-спирали), из вне- и внутриклеточных петель и концевых участков доменов (представлены полярными областями молекул, формирующих домен и выступающих за пределы билипидного слоя мембраны). Каждый из трансмембранных сегментов, вне- и внутриклеточных петель и концевых участков доменов выполняет свою функцию. Так, трансмембранный сегмент 2, организованный в виде α-спирали, определяет селективность канала. Концевые участки домена выступают в качестве сенсоров к вне- и внутриклеточным лигандам, а один из трансмембранных сегментов играет роль потенциалзависимого сенсора. Третьи трансмембранные сегменты в субъединице ответственны за работу воротной системы каналов и т.д. Ионные каналы работают по механизму облегченной диффузии. Движение по ним ионов при активации каналов идет по градиенту концентрации. Скорость перемещения через мембрану составляет 10 ионов в секунду. Специфичность ионных каналов. Большая часть из них относятся к селективным, т.е. каналам, пропускающим только один вид ионов (натриевые каналы, калиевые каналы, кальциевые каналы, анионные каналы). Селективность канала. Селективность канала определяется наличием избирательного фильтра. Сенсор ионного канала. Сенсор ионного канала - чувствительная часть канала, которая воспринимает сигналы, природа которых может быть различна. На этой основе выделяют: потенциалзависимые ионные каналы; рецепторуправляемые ионные каналы; лигандуправляемые (лигандзависимые); механоуправляемые (механозависимые). Каналы, имеющие сенсор, называются управляемыми. У некоторых каналов сенсор отсутствует. Такие каналы называют неуправляемыми. Воротная система ионного канала. У канала есть ворота, которые закрыты в состоянии покоя и открываются при воздействии сигнала. У некоторых каналов выделяют два вида ворот: активационные (m-ворота) и инактивационные (h-ворота). Выделяют три состояния ионных каналов: состояние покоя, когда ворота закрыты и канал недоступен для ионов; состояние активации, когда воротная система открыта и ионы перемещается через мембрану по каналу; состояние инактивации, когда канал закрыт и не отвечает на стимулы. Скорость проведения (проводимость). Бывают быстрые и медленные каналы. Каналы “утечки” - медленные, натриевые каналы в нейронах - быстрые. В мембране любой клетки имеется большой набор разнообразных (по скорости) ионных каналов, от активации которых зависит функциональное состояние клеток. Потенциалуправляемые каналы. Потенциалуправляемый канал состоит из: поры, заполненной водой; устья; селективного фильтра; активационных и инактивационных ворот; сенсора напряжения. Диаметр канала значительно больше диаметра иона, в зоне селективного фильтра он сужается до атомарных размеров, это и обеспечивает выполнение данным участком канала функции селективного фильтра. Открытие и закрытие воротного механизма возникает при изменении мембранного потенциала, причем открываются ворота при одном значении мембранного потенциала, а закрываются при другом уровне потенциала мембраны. 8.Ионно-мембранная теория происхождения биоэлектрических явлений (Ходжкин, Хаксли, Катц). Электрические явления в возбудимых тканях (потенциал покоя, потенциал действия, токи градиента основного обмена, токи повреждения). В настоящее время происхождение электрических явлений в тканях объясняется с точки зрения ионно-мембранной теории. В 1956-м году Ходжкин и Катц за создание ионно-мембранной теории получили Нобелевскую премию. Основные положения этой теории. 1. Электрические процессы в клетке возникают вследствие того, что мембрана обладает избирательной селективной проницаемостью для ионов. 2. В процессе жизнедеятельностипроисходит изменение проницаемости мембраны, в покое она проницаема для одних ионов, а при переходе в активное состояние - для других. 3. Электрические явления в тканях обусловлены неравномерным распределением ионов между цитоплазмой клетки и межклеточной жидкостью. Прежде всего, это касается натрия и калия, в какой-то степени и хлора. 4. Избирательное перемещение ионов через мембрану изменяет ее электрическое состояние и создает (формирует) новые виды электрических явлений в клетках. |