Главная страница

реферат по инф. Характерные черты искусственных нейросетей как универсального инструмента для решения задач


Скачать 97.8 Kb.
НазваниеХарактерные черты искусственных нейросетей как универсального инструмента для решения задач
Дата04.03.2019
Размер97.8 Kb.
Формат файлаdocx
Имя файлареферат по инф.docx
ТипДокументы
#69566

Оглавление


1.Используемая литература 2

2.Введение 3

2. Характерные черты искусственных нейросетей как универсального инструмента для решения задач 3

3.Важнейшие свойства нейросетей 4

3.1 Свойства биологических нейросетей 5

3.2 Свойства искусственных нейросетей 6

4. Основные компоненты 6

5. Структура нейронной сети. 8

6. Сегодняшнее положение 8

7.Итог 9


1.Используемая литература



1.https://psyfactor.org/lib/dorrer-0.htm

2.http://www.aiportal.ru/articles/neural-networks/properties.html

3.Нейронные сети: основные модели- Иван Витальевич Заенцев

4.Основные концепции нейронных сетей- Роберт Каллан

5.https://gagadget.com/another/27575-prostyimi-slovami-o-slozhnom-chto-takoe-nejronnyie-seti/

2.Введение



Теория нейронных сетей включают широкий круг вопросов из разных областей науки: биофизики, математики, информатики, схемотехники и технологии. Поэтому понятие "нейронные сети" детально определить сложно.

Искусственные нейронные сети (НС) — совокупность моделей биологических нейронных сетей.

Представляют собой сеть элементов — искусственных нейронов — связанных между собой синаптическими соединениями. Сеть обрабатывает входную информацию и в процессе изменения своего состояния во времени формирует совокупность выходных сигналов.

Работа сети состоит в преобразовании входных сигналов во времени, в результате чего меняется внутреннее состояние сети и формируются выходные воздействия. Обычно НС оперирует цифровыми, а не символьными величинами.

Большинство моделей НС требуют обучения. В общем случае, обучение — такой выбор параметров сети, при котором сеть лучше всего справляется с поставленной проблемой. Обучение — это задача многомерной оптимизации, и для ее решения существует множество алгоритмов.

Искусственные нейронные сети — набор математических и алгоритмических методов для решения широкого круга задач.

2. Характерные черты искусственных нейросетей как универсального инструмента для решения задач


1. НС дают возможность лучше понять организацию нервной системы человека и животных на средних уровнях: память, обработка сенсорной информации, моторика.

2. НС — средство обработки информации

3. НС свободны от ограничений обычных компьютеров благодаря параллельной обработке и сильной связанности нейронов.

4. В перспективе НС должны помочь понять принципы, на которых построены высшие функции нервной системы: сознание, эмоции, мышление.

Существенную часть в теории нейронных сетей занимают биофизические проблемы. Для построения адекватной математической модели необходимо детально изучить работу биологических нервных клеток и сетей с точки зрения химии, физики, теории информации и синергетики. Должны быть известны ответы на основные вопросы:

1. Как работает нервная клетка — биологический нейрон? Необходимо иметь математическую модель, адекватно описывающую информационные процессы в нейроне. Какие свойства нейрона важны при моделировании, а какие — нет?

2. Как передается информация через соединения между нейронами синапсы? Как меняется проводимость синапса в зависимости от проходящих по нему сигналов?

3. По каким законам нейроны связаны друг с другом в сеть? Откуда нервная клетка знает, с какими соседями должно быть установлено соединение?

4. Как биологические нейронные сети обучаются решать задачи? Как выбираются параметры сети, чтобы давать правильные выходные сигналы? Какой выходной сигнал считается "правильным", а какой — ошибочным?


3.Важнейшие свойства нейросетей


Искусственные нейронные сети индуцированы биологией, так как они состоят из элементов, функциональные возможности которых аналогичны большинству элементарных функций биологического нейрона. Эти элементы затем организуются по способу, который соответствует анатомии мозга. Даже при таком поверхностном сходстве, искусственные нейронные сети демонстрируют удивительное число свойств, присущих мозгу. Например, они обучаются на основе опыта, обобщают предыдущие прецеденты на новые случаи и извлекают существенные свойства из поступающей информации, содержащей излишние данные.

Несмотря на такое функциональное сходство, даже самый оптимистичный их защитник не предположит, что в скором будущем искусственные нейронные сети будут дублировать функции человеческого мозга. Реальный «интеллект», демонстрируемый самыми сложными нейронными сетями, находится ниже уровня дождевого червя, и энтузиазм должен быть умерен в соответствии с современными реалиями. Однако равным образом было бы неверным игнорировать удивительное сходство в функционировании некоторых нейронных сетей с человеческим мозгом. Эти возможности, как бы они ни были ограничены сегодня, наводят на мысль, что глубокое проникновение в человеческий интеллект, а также множество революционных приложений, могут быть не за горами.

3.1 Свойства биологических нейросетей


1. Параллельность обработки информации. Каждый нейрон формирует свой выход только на основе своих входов и собственного внутреннего состояния под воздействием общих механизмов регуляции нервной системы.

2. Способность к полной обработке информации. Все известные человеку задачи решаются нейронными сетями. К этой группе свойств относятся ассоциативность (сеть может восстанавливать полный образ по его части), способность к классификации, обобщению, абстрагированию и множество других. Они до конца не систематизированы.

3. Самоорганизация.

4. Биологические НС являются аналоговыми системами. Информация поступает в сеть по большому количеству каналов и кодируется по пространственному принципу: вид информации определяется номером нервного волокна, по которому она передается. Амплитуда входного воздействия кодируется плотностью нервных импульсов, передаваемых по волокну.

5. Надежность. Биологические НС обладают фантастической надежностью: выход из строя даже 10% нейронов в нервной системе не прерывает ее работы. По сравнению с последовательными ЭВМ, основанными на принципах фонНеймана, где сбой одной ячейки памяти или одного узла в аппаратуре приводит к краху системы.

3.2 Свойства искусственных нейросетей


1. Обучаемость. Выбрав одну из моделей НС, создав сеть и выполнив алгоритм обучения, мы можем обучить сеть решению задачи, которая ей по силам. Нет никаких гарантий, что это удастся сделать при выбранных сети, алгоритме и задаче, но если все сделано правильно, то обучение бывает успешным.

2. Способность к обобщению. После обучения сеть становится нечувствительной к малым изменениям входных сигналов (шуму или вариациям входных образов) и дает правильный результат на выходе.

3. Способность к абстрагированию. Если предъявить сети несколько искаженных вариантов входного образа, то сеть сама может создать на выходе идеальный образ, с которым она никогда не встречалась.

4. Основные компоненты


Нейронная сеть является совокупностью элементов, соединенных некоторым образом так, чтобы между ними обеспечивалось взаимодецствие. Эти элементы, называемые также нейронами или узлами, представляют собой простые процессоры, вычислительные возможности которых обычно ограничиваются некоторым праивлом комбинирования входных сигналов и правилом активации, позволяющим вычислить выходной сигнал по совокупности входных сигналов. Выходной сигнал элемента может посылаться другим элементам по взвешенным связям, с каждым из которых связан весовой коэфицент или вес В зависимости от значения весового коэфициента передаваемый сигнал или усваивается, или подавляется. Элемент нейронной сети схематически представлен на рисунке 1.1



Рис.1.1 Отдельный элемент сети.

Нейронная сеть представляет собой структуру взаимосвязанных клеточных автоматов, состоящую из следующих основных элементов:

Нейрон — элемент, преобразующий входной сигнал по функции:

https://psyfactor.org/lib/i/dor/image230.gif

где x — входной сигнал, c — параметр, определяющий крутизну графика пороговой функции, а cm — параметр спонтанной активности нейрона.

Сумматор— элемент, осуществляющий суммирование сигналов поступающих на его вход:

https://psyfactor.org/lib/i/dor/image232.gif

Синапс — элемент, осуществляющий линейную передачу сигнала:

https://psyfactor.org/lib/i/dor/image234.gif

где w — «вес» соответствующего синапса.

5. Структура нейронной сети.


Сеть состоит из нейронов, соединенных синапсами через сумматоры по следующей схеме:



Рис. 1.3 Структура нейронной сети.

6. Сегодняшнее положение


И какой бы многообещающей не была бы эта технология, пока что ИНС еще очень далеки от возможностей человеческого мозга и мышления. Тем не менее, уже сейчас нейросети применяются во многих сферах деятельности человека. Пока что они не способны принимать высокоинтеллектуальные решения, но в состоянии заменить человека там, где раньше он был необходим. Среди многочисленных областей применения ИНС можно отметить: создание самообучающихся систем производственных процессов, беспилотные транспортные средства, системы распознавания изображений, интеллектуальные охранные системы, робототехника, системы мониторинга качества, голосовые интерфейсы взаимодействия, системы аналитики и многое другое. Такое широкое распространение нейросетей помимо прочего обусловлено появлением различных способов ускорения обучения ИНС. На сегодняшний день рынок нейронных сетей огромен — это миллиарды и миллиарды долларов. Как показывает практика, большинство технологий нейросетей по всему миру мало отличаются друг от друга. Однако применение нейросетей — это очень затратное занятие, которое в большинстве случаев могут позволить себе только крупные компании. Для разработки, обучения и тестирования нейронных сетей требуются большие вычислительные мощности, очевидно, что этого в достатке имеется у крупных игроков на рынке ИТ. Среди основных компаний, ведущих разработки в этой области можно отметить подразделение Google DeepMind, подразделение Microsoft Research, компании IBM, Facebook и Baidu.

Конечно, все это хорошо: нейросети развиваются, рынок растет, но пока что главная задача так и не решена. Человечеству не удалось создать технологию, хотя бы приближенную по возможностям к человеческому мозгу. Давайте рассмотрим основные различия между человеческим мозгом и искусственными нейросетями.

7.Итог


Безусловно, в последнее десятилетие произошел настоящий бум развития нейронных сетей. В первую очередь это связано с тем, что процесс обучения ИНС стал намного быстрее и проще. Также стали активно разрабатываться так называемые «предобученные» нейросети, которые позволяют существенно ускорить процесс внедрения технологии. И если пока что рано говорить о том, смогут ли когда-то нейросети полностью воспроизвести возможности человеческого мозга, вероятность того, что в ближайшее десятилетие ИНС смогут заменить человека на четверти существующих профессий все больше становится похожим на правду.


написать администратору сайта