Главная страница

Хранение энергии. Обзор. Хранение энергии 28.06.22. Хранение энергии в контексте энергетического перехода обзор технологий Аннотация


Скачать 4.08 Mb.
НазваниеХранение энергии в контексте энергетического перехода обзор технологий Аннотация
АнкорХранение энергии. Обзор
Дата08.05.2023
Размер4.08 Mb.
Формат файлаdocx
Имя файлаХранение энергии 28.06.22.docx
ТипДокументы
#1115769
страница10 из 11
1   2   3   4   5   6   7   8   9   10   11
http://pennwell.websds.net/2014/cologne/pge/slideshows

T7S6O30-slides.pdf (Last accessed: 20/09/2015).

[85] Luo X, Wang J, Dooner M, Clarke J. Overview of current development in

electrical energy storage technologies and the application potential in power system operation. Appl Energy 2015;137:511–36.

[86] Highview Power Storage. Cryogen: a mature product; now a new means of energy storage. 〈http://www.imeche.org/docs/default-source/2011-press-re

leases/Highview_2pager.pdf〉 (Last accessed: 20/09/2015).

[87] Holt W. Scotland: A case study for liquid air storage. Highview Power Storage. Summary Report; 2013. 〈http://www.liquidair.org.uk/case-studies/〉

(Last accessed: 20/09/2015).

[88] Barbour E. An investigation into the potential of energy storage to tackle

intermittency in renewable energy generation.Edinburg, UK:

University Of Edinburg; 2013.

[89] Desrues T, Ruer J, Marty P, Fourmigué JF. A thermal energy storage process for large scale electric applications. Appl Therm Eng 2009;30(5):425–32.

[90] Ruer J, Sibaud E, Desrues T, Muguerra P. Pumped Heat Energy Storage.

General Presentation. Saipem; 2010. http://www.keynergie.com/articles/paper%20phs-paper.pdf (Last accessed: 21/09/2015).

[91] Thess A. Thermodynamic efficiency of pumped heat electricity storage. Phys Rev Lett 2013;111(11) 110602-1-5.

[92] White A, Parks G, Markides CN. Thermodynamic analysis of pumped thermal electricity storage. Appl Therm Eng 2013;53(2):291–8.

[93] ARUP. Five-minute guide to electricity storage technologies; 2012. 〈http://publications.arup.com/Publications/F/Five_minute_guide_electricity_sto

rage_technologies.aspx〉 (Last accessed: 21/09/2015).

[94] Proctor P. Energy storage: a potential game changer and enabler for meeting our future energy needs? Loughborough, UK: Energy Technologies Institute (ETI); 2014.

[95] Isis Innovation Ltd. Pumped Heat Electricity Storage (PHES) Project. University of Oxford. 〈http://isis-innovation.com/licence-details/pumped-heatelectricity-storage-phes-technology/〉 (Last accessed: 21/09/2015).

[96] Drouilhet S., Johnson B.L. A Battery Life Prediction Method for Hybrid Power Applications.The 35th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA;1997.

[97] Ning G, White RE, Popov BN. A generalized cycle life model of rechargeable Li-ion batteries. J Electrochim Acta 2006;51(10):2012–22.

[98] Linden D, Reddy TB. Secondary batteries – introduction. 3rd ed.. In: Linden D, Reddy TB, editors. Handbook of batteries. Chapter 22.,. New York, USA: McGraw-Hill; 2002.

[99] Rydh CJ, Sandén BA. Energy analysis of batteries in photovoltaic systems. Part I: performance and energy requirements. Energy Convers Manag 2005;46 (11–12):1957–79.

[100] Krivik P, Baca P. Electrochemical energy storage. In: Zobaa A, editor. Energy storage – technologies and applications. Rijeka, Croatia: InTech; 2013 ISBN: 978-953-51-0951-8.

[101] Albright G, J. Edie, S. Al-Hallaj A Comparison of Lead Acid to Lithium-ion in Stationary Storage Applications. AllCell Technologies LLC 2012. 〈http://www. batterypoweronline.com/main/wp-content/uploads/2012/07/Lead-acidwhite-paper.pdf〉 ((Last accessed): 21/02/2016).

[102] Victron Energy. Gel and AGM Batteries. Product brochure. 〈https://www.victronenergy.com/upload/documents/Datasheet-GEL-and-AGM-Batteries-EN. pdf〉 (Last accessed: 21/02/2016).

[103] Albertus P, Christensen J, Newman J. Modeling side reactions and nonisothermal effects in nickel metal-hydride batteries. J Electrochem Soc 2008;155(1):A48–60.

[104] Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today 2015;18(5):252–64.

[105] Chen J. Recent progress in advanced materials for lithium ion batteries.

Materials 2013;6:156–83.

[106] Whittingham MS. Lithium batteries and cathode materials. Chem Rev

2004;104:4271–301.

[107] Dahn J., Ehrlich G.M. Lithium-ion Batteries. Chapter 26. In: Reddy T.B. editor, Linden D., editor emeritus. Handbook of Batteries. 4th ed. New York, USA:

McGraw-Hill; 2011.

[108] Scrosati B, Hassoun J. Lithium batteries: status and future. In: Chan K, Li CV, editors. Electrochemically enabled sustainability – devices, materials and

mechanisms for energy conversion. Chapter 3.,. Boca Raton, USA: CRC Press;

2014.

[109] Deng D. Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 2015;3(5):385–418.

[110] Buchmann I. Batteries in a portable world: a handbook on rechargeable

batteries for non-engineers. 3rd ed.. Richmond, Canada: Cadex Electronics Inc; 2011.

[111] Burke A, Miller M. Performance characteristics of lithium-ion batteries of various chemistries for plug-in hybrid vehicles. (Working Paper Series). Institute of Transportation Studies; 2009.

[112] Bradbury K. Energy Storage Technology Review; 2010 〈http://www.kylebrad bury.org/〉 (Last accessed: 20/09/2015).

[113] Schlumberger Energy Institute (SBC). Electricity Storage Factbook. Leading the Energy Transition; 2013. ttps://www.sbc.slb.com/SBCInstitute/Publica

tions/ElectricityStorage.aspx〉 (Last accessed: 20/09/2015).

[114] NGK Insulators Ltd. NAS Sodium Sulfur Battery Energy Storage System. History of NAS Battery Development. https://www.ngk.co.jp/nas/why/history.

html〉 (Last accessed: 22/09/2015).

[115] Fuchs G, Lunz B, Leuthold M, Sauer DU. Technology overview on electricity storage. Overview on the potential and on the deployment perspectives of electricity storage technologies. Aachen, Germany: Institut Für Stromrichtertechnik Und Elektrische Antriebe (ISEA), RWTH Aachen University; 2012.

[116] Abele A, Elkind E, Intrator J, Washom B. 2020 strategic analysis of energy storage in California. Sacramento.USA: California Energy Commission; 2011.

[117] Meridian International Research. The Sodium Nickel Chloride “Zebra” Battery. In: 2007: Peak Oil The Electric Vehicle Imperative Market Analysis Technology Assessment. Martainville, France: Meridian International Research; 2005.

[118] FIAMM. FIAMM SoNick. 〈http://www.fiammsonick.com/〉 (Last accessed: 21/02/2016).

[119] Cavanagh K, Ward JK, Behrens S, Bhatt AI, Ratnam EL, Oliver E, Hayward J. Electrical energy storage: technology overview and applications. EP154168. Newcastle, Australia: CSIRO; 2015.

[120] Miraldi A.K., Restello S. Sodium Metal Chloride Battery Safety in Standby Applications. International Stationary Battery Conference, Battcon; 2013.

[121] Dustmann CH, Bito A. Safety. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B, editors. Encyclopedia of electrochemical power sources, 4.

Amsterdam, Nederland: Elsevier; 2009.

[122] Bindner H, Ekman C, Gehrke O, Isleifsson F. Characterization of vanadium flow battery, revised. Roskilde, Denmark: Risø DTU; 2012.

[123] Soloveichik GL. Battery technologies for large-scale stationary energy storage. Annu Rev Chem Biomol Eng 2011;2:503–27.

[124] Soloveichik GL. Flow batteries: current status and trends. Chem Rev 2015;115 (20):11533–58.

[125] Dennenmoser M. Status and potential of redox flow batteries. Presentation at Inter Solar 2012/ PV Energy World Munich, Germany: Fraunhofer Institute

For Solar Energy Systems ISE; 2012. 〈http://www.intersolar.de/fileadmin/Intersolar_Europe/Besucher_Service_2012/PV_ENERGY_WORLD/120613-4-PVEW-Dennenmoser-Fraunhofer-ISE.pdf〉 Last accessed: 21/02/2016.

[126] Chalamala BR, Soundappan T, Fisher GR, Anstey MR, Viswanathan VV, Perry ML. Redox flow batteries: an engineering perspective. Proc IEEE 2014;102 (6):976–99.

[127] Prudent Energy. VRB Systems. Product brochure. 2011. 〈http://www.pdenergy.com/pdfs/Prudent_Energy_Product_Brochure_2011.pdf〉 (Last accessed: 21/02/2016).

[128] P. de Boer, J. Raadschelders Flow batteries. Leonardo ENERGY; 2007. 〈http://www.leonardo-energy.org/sites/leonardo-energy/files/root/pdf/2007/

Briefing%20paper%20-%20Flow%20batteries.pdf〉 ((Last accessed): 21/02/

2016).

[129] Hatzell KB, Boota M, Kumbur EC, Gogotsia Y. Flowable conducting particlenetworks in redox-active electrolytes for grid energy storage. J Electrochem

Soc 2015;162(5):A5007–12.

[130] Akhil A.A., Huff G., Currier A.B., Kaun B.C., Rastler D.M., Chen S.B., Cotter A.L., Bradshaw D.T., Gauntlett W.D. DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA. Sandia Report SAND2013–5131. Albuquerque, USA: Sandia National Laboratories; 2013.

[131] Abraham KM. A brief history of non-aqueous metal-air batteries. ECS Trans 2008;3(42):67–71.

[132] Das SK, Laub S, Archer LA. Sodium–oxygen batteries: a new class of metal–air batteries. J Mater Chem A 2014;2:12623–9.

[133] Hartmann P, Bender CL, Vračar M, Dürr AK, Garsuch A, Janek J, Adelhelm P. A. rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 2013;12:228–32.

[134] Xia C, Black R, Fernandes R, Adams B, Nazar LF. The critical role of phasetransfer catalysis in aprotic sodium oxygen batteries.

Nat Chem 2015;7:496–501.

[135] Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 2013;4:1805.

[136] European Commission. Materials Roadmap Enabling Low Carbon Energy Technologies. Commission Staff Working Paper, COM(2011) 1609. Brussels,

Belgium: European Commission; 2011.

[137] Armand M, Tarascon JM. Building better batteries. Nature 2008:652–7.

[138] Shukla AK, Banerjee A, Ravikumar MK. Lead–carbon hybrid ultracapacitors and their applications. In: Chan K, Li CV, editors. Electrochemically enabled sustainability – devices, materials and mechanisms for energy conversion.

Chapter 8.,. Boca Raton, USA: CRC Press; 2014.

[139] Burke A. Electrochemical Capacitors. Chapter 39. In: Reddy T.B. editor, Linden D., editor emeritus. Handbook of Batteries. 4th ed. New York, USA: McGrawHill; 2011.

[140] González A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 2016;58:1189–206.

[141] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 2012;41:797–828.

[142] Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 2015; 44:1777–90.

[143] Cericola D, Kötz R. Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits. Electrochim Acta 2012;72:1–17.

[144] Hsu CS, Lee WJ. Superconducting magnetic energy storage for power system applications. IEEE Trans Ind Appl 1993;29(5):990–6.

[145] Lorenzen HW, Brammer U, Harke M, Rosenbauer F. Small and fast-acting SMES systems. In: Seeber B, editor. Handbook of applied superconductivity,

2. Bristol, UK: Taylor & Francis; 1998.

[146] Schoenung SM, Hassenzahl WV. Long- vs. short-term energy storage technologies analysis - a life-cycle cost study Sandia Report SAND2003-2783.

Albuquerque, USA: Sandia National Laboratories; 2003. A.B. Gallo et al. / Renewable and Sustainable Energy Reviews 65 (2016) 800–822 821

[147] General Electric Industrial Systems, American Superconductor. d-SMES folder. 〈http://www.cocier.org/memoriascosmer2013/Modulo%205/CM5_5/

GE_DSMES.pdf〉 (Last accessed: 21/02/2016).

[148] Abdurrahman M, Baker S, Keshavamurty B, Jacobs M. Energy storage as a transmission asset. PJM Tech Rep, 2012.https://www.pjm.com/ /media/markets-ops/advanced-tech-pilots/xtreme-power-storage-as-transmission.ashx (Last accessed: 21/02/2016).

[149] Modern Power Systems. Distributed SMES: a new technology supporting active grid management. 〈http://www.modernpowersystems.com/features/

featuredistributed-smes-a-new-technology-supporting-active-grid-management/〉 (Last accessed: 21/02/2016).

[150] Nagaya S, Hirano N, Kondo M, Tanaka T, Nakabayashi H, Shikimachi K, et al. Development and performance results of 5 MVA SMES for bridging instantaneous voltage dips. IEEE Trans Appl Supercond 2004;14(2):699–704.

[151] Bray JW. Superconductors in applications; some practical aspects. IEEE Trans Appl Supercond 2009;19(3):2533–9.

[152] ABB., ARPA-E Superconducting Magnet Energy Storage System with Direct Power Electronics Interface. 〈http://arpa-e.energy.gov/?q¼slick-sheet-project/magnetic-energy-storage-system〉 (Last accessed: 21/02/2016).

[153] Tai-Yang, ARPA-E Research Company (TYRC). Novel, Low-Cost, High-Field Conductor for Superconducting Magnetic Energy Storage. 〈http://arpa-e.energy.gov/?q¼slick-sheet-project/high-power-low-cost-superconductingcable〉 (Last accessed: 21/02/2016).

[154] Blanchard JP. Environmental Issues Associated with Superconducting MagneticEnergy Storage (SMES) Plants. In: Proceedings of the 24th Intersoc Energy Convers Eng Conf (IECEC’89), 1989;4. p. 1777–82.

[155] Polk C, Boom RW, Eyssa YM. Superconductive Magnetic Energy Storage (SMES) external fields and safety considerations. IEEE Trans Magn 1992;28

(1):478–81.

[156] Grond L, Schulze P, Holstein J. Systems analyses Power to Gas: A technology review. DNV KEMA Energy & Sustainability. Groningen, Nederland: KEMA; 2013.

[157] International Energy Agency (IEA). Technology Roadmap: Hydrogen and Fuel Cells.Paris, France: OECD/IEA; 2015.

[158] Zittel W, Wurster R, Bolkow L. Advantages and disadvantages of hydrogen. Hydrogen in the energy sector.Sömmerda, Germany: Systemtechnik Gmbitt; 1996.

[159] Ragheb M. Hydride Alloys for Hydrogen Storage. In: Energy Storage and Conveyance – Bridging the Supply-Demand Gap. Urbana-Champaign, USA:

University of Illinois; 2011.

[160] Tozzini V, Pellegrini V. Prospects for hydrogen storage in graphene. Phys Chem Chem Phys 2013;15(1):80–9.

[161] Auer J, Keil J. State-of-the-art electricity storage systems. DB Research.

Frankfurt am Main, Germany: Deutsche Bank; 2012.

[162] Sterner M. Bioenergy and renewable power methane in integrated 100%

renewable energy systems Kassel, Germany: Kassel University Press; 2009.

〈http://www.uni-kassel.de/upress/online/frei/978-3-89958-798-2.volltext.

frei.pdf〉 Last accessed: 22/09/2015.

[163] Verdegaal W. Business models for power-to-gas/liquids – potential, challenges and uncertainties. Sunfire. Presentation at Institute for Advanced

Sustainability Studies (IASS) Brainstorming Workshop “Sustainable Fuels

from Renewable Energies”.Potsdam, Germany: IASS Potsdam; 2013.

[164] Harp G., Tran K.C., Sigurbjornsson O., Bergins C., Buddenberg T., Drach I.,Koytsoumpa E.I. Application of Power to Methanol Technology to Integrated Steelworks for Profitability, Conversion Efficiency, and CO2 Reduction. Paper presented at METEC & 2nd European Steel Technology and Application Days (ESTAD). Düsseldorf, Germany: METEC & 2nd ESTAD; 2015. 〈http://www.

metec-estad2015.com/papers2015final/P643.pdf〉 (Last accessed: 22/09/2015).

[165] Bilfinger Industrial Technologies / sunfire – Power-to-Liquids Fact Sheet. 〈http://www.sunfire.de/en/kreislauf/power-to-liquids〉 (Last accessed: 22/09/

2015).

[166] Herron JA, Kim J, Upadhye AA, Huber GW, Maravelias CT. A general framework for the assessment of solar fuel technologies. Energy Environ Sci

2015;8:126–57.

[167] Kim J, Henao CA, Johnson TA, Dedrick DE, Miller JE, Stecheld EB, Maravelias CT. Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy Environ Sci 2011;4:3122–32.

[168] Kim J, Johnson TA, Miller JE, Stecheld EB, Maravelias CT. Fuel production from CO2 using solar-thermal energy: system level analysis. Energy Environ Sci 2012;5:8417–29 (|).

[169] Haije WG, Geerlings H. Efficient production of solar fuel using existing large scale production technologies. Environ Sci Technol 2011;45(20):8609–10.

[170] Furler P. Solar thermochemical CO₂ and H₂O splitting via Ceria Redox Reactions.Zürich, Switzerland: ETH-Zürich; http://dx.doi.org/10.3929/ethz-a-010207593.

[171] van de Sanden R. Energy storage in CO2 neutral fuels: a plasma perspective. Dutch Institute for Fundamental Energy Research (DIFFER). EU 2050 Power Lab; 2014. https://www.kivi.nl/eu2050powerlab (Last accessed: 22/09/2015).

[172] Newman J, Hoertz PG, Bonino CA, Trainham JA. Review: an economic perspective on liquid solar fuels. J Electrochem Soc 2012;159(10):A1722–9.

[173] Ribas VE, JRH, Rodrigues, J.R. Simões-Moreira The Use of Concentrated Solar Power in Steam Gasification of Biomass. In: 15th Brazilian Congress of Thermal Sciences and Engineering, 2014, Belém. Anais do 15th ENCIT. RJ:

ABCM; 2014.

[174] A. Hauer Thermal Energy Storage. Technology Policy Brief E17. IEA-ETSAP and IRENA; 2012.

[175] Abedin AH, Rosen MA. A critical review of thermochemical energy storage systems. Open Renew Energy J 2011;4:42–6.

[176] Trausel F, de Jong A, Cuypers R. A review on the properties of salt hydrates for thermochemical storage. Energy Procedia 2014;48:447–52.

[177] Tescari S, Agrafiotis C, Breuer S, de Oliveira L, Puttkamer MN, Roeb M, Sattler C. Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts. Energy Procedia 2014;49:1034–43.

[178] Connolly D. A Review of Energy Storage Technologies For the integration of fluctuating renewable energy. Connolly D, PhD Project. Limerick, Ireland:

1   2   3   4   5   6   7   8   9   10   11


написать администратору сайта