Главная страница

Хранение энергии. Обзор. Хранение энергии 28.06.22. Хранение энергии в контексте энергетического перехода обзор технологий Аннотация


Скачать 4.08 Mb.
НазваниеХранение энергии в контексте энергетического перехода обзор технологий Аннотация
АнкорХранение энергии. Обзор
Дата08.05.2023
Размер4.08 Mb.
Формат файлаdocx
Имя файлаХранение энергии 28.06.22.docx
ТипДокументы
#1115769
страница9 из 11
1   2   3   4   5   6   7   8   9   10   11

4.Заключение


Существует несколько различных технических решений для ES. В этой статье двадцать восемь альтернатив были описаны и проанализированы с обновленной информацией и данными, полученными из подробного обзора литературы, в отношении технических характеристик, таких как номинальная мощность, время разряда, время отклика, скорость саморазряда, подходящий период хранения, эффективность, плотность энергии, удельная мощность, удельная энергия, удельная мощность, срок службы, капитальные затраты, технологическая зрелость и экологические проблемы.

Технологии ES имеют широкий спектр приложений, которые можно классифицировать по-разному. Были приняты логика логистической и параметрической классификации, описывающая десять приложений и их соответствующие технические требования (номинальная мощность, продолжительность разряда и время отклика). Выбранными приложениями являются сдвиг во времени, управление энергопотреблением, сезонное хранение энергии, отсрочка инвестиций в передачу и распределение, надежность электроснабжения, крупномасштабная интеграция возобновляемых источников энергии, качество электроэнергии, регулирование сети, распределенная интеграция возобновляемых источников энергии и транспортные приложения.
Ни одна технология ES не выделяется одновременно по всем техническим характеристикам, поэтому выбор должен осуществляться на индивидуальной основе. В частности, в случае энергетического перехода, требующего сезонного хранения энергии, как показано в этом документе, помимо PHS, зрелой технологии, следующие технологии очень перспективны: Innovative CAES, P2G, P2L и Solarto-Fuel. Последние три имеют большое преимущество, заключающееся в возможности интеграции нескольких энергетических рынков и даже транспортного сектора, что делает возможным широкое проникновение возобновляемых источников в приложения на основе углеводородов, что необходимо для перехода к энергетике.

Транспортный сектор можно дополнительно решить с помощью PHEV и EV, которые также помогают управлять сетью в приложениях V2G. Существуют два основных препятствия для развертывания ЭС: первое связано с экономической целесообразностью бизнес-моделей ЭС, а второе требуемую нормативную среду.

Экономическое уравнение сложно решить, потому что технологии ES требуют значительных капиталовложений и необходимо объединять несколько приложений для получения достаточного дохода. Однако многие приложения трудно поддаются количественной оценке и монетизации, что требует внесения изменений в законодательство. В дополнение к этому отсутствию нормативной поддержки необходимо решать вопросы собственности, особенно потому, что повышение общественного благосостояния от преимуществ приложений ES может зависеть от владельца устройства ES. Необходимы дальнейшие исследования, чтобы проанализировать влияние этих барьеров на развертывание ES и способы их преодоления

Благодарности



Авторы хотели бы выразить признательность Исследовательскому центру газовых инноваций RCGI, спонсируемому FAPESP (2014/50279-4) и BG Group Brasil, а также выразить признательность Институту энергетики и окружающей среды, USP, Национальному институту Бразилии, Агентству нефти, природного газа и биотоплива (ANP) и Координация повышения квалификации кадров высшего образования (CAPES). Второй автор благодарит Бразильский национальный совет по научно-техническому развитию (CNPq) за продуктивность исследовательского гранта.

Использованная литература



[1] IPCC. Climate Change 2014: Synthesis Report. Geneva, Switzerland: Intergovernmental Panel on Climate Change; 2014.

[2] Ed Dlugokencky and Pieter Tans, NOAA/(ESRL) 〈www.esrl.noaa.gov/gmd/ccgg/trends/〉 ((Last accessed): 20/09/2015).

[3] European Commission. The 2015 international climate change agreement:

shaping international climate policy beyond 2020, COM(2013) 167. Brussels,

Belgium: European Commission; March 26, 2013.

[4] Global Wind Energy Council. Global Wind Report. Annual Market Update 2014. Brussels, Belgium: Global Wind Energy Council; March 2015.

[5] REN21. Renewables 2015 Global Status Report. Paris, France: Renewables energy policy network for the 21st century; 2012.

[6] International Energy Agency (IEA). Technology roadmap: solar photovoltaic energy.Paris, France: OECD/IEA; 2014.

[7] GlobalData. Solar PV Module Value Chain – Market Size, Average Price,

Market Share and Key Country Analysis to 2020. London, UK: GlobalData;

October 2014.

[8] International Energy Agency (IEA). World energy outlook 2013.Paris, France: OECD/IEA; 2013.

[9] Pickard WF, Shen AQ, Hansing NJ. Parking the power: strategies and physical limitations for bulk energy storage in supply–demand matching on a grid

whose input power is provided by intermittent sources. Renew Sustain Energy Rev 2009;13(8):1934–45.

[10] Evans A, Strezov V, Evans T. Assessment of utility energy storage options for increased renewable energy penetration. Renew Sustain Energy Rev 2012;16 (6):4141–7.

[11] Denholm P, Hand M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 2011;39

(3):1817–30.

[12] International Energy Agency (IEA). Empowering variable renewables – options for flexible electricity systems.Paris, France: OECD/IEA; 2008.

[13] International Energy Agency (IEA). Harnessing variable renewables – a guide to the balancing change.Paris, France: OECD/IEA; 2011.

[14] Kondziella H, Bruckner T. Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies. Renew

Sustain Energy Rev 2016;53:10–22.

[15] Milborrow D. Impacts of wind on electricity systems with particular reference to Alberta. Tech. rep. Ottawa.Canada: Canadian Wind Energy Association; 2004.

[16] Doherty R, O’Malley M. A new approach to quantify reserve demand in

systems with significant installed wind capacity. IEEE Trans Power Syst 2005; 20(2):587–95.

[17] Ela E, Kirby B. Ercot event on February 26, 2008: Lessons learned. Tech. Rep. NREL/TP-500-43373. Golden, USA: National Renewable Energy Lab; 2008.

[18] Lund PD, Lindgren J, Mikkola J, Salpakari J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew Sustain Energy Rev 2015;45:785–807.

[19] Paatero JV, Lund PD. Effects of large-scale photovoltaic power integration on electricity distribution networks. Renew Energy 2007;32:216–34.

[20] Holttinen H. Wind integration: experience, issues and challenges. WileyInterdiscip Rev Energy Environ 2012;1:243–55.

[21] Lipman T, Ramos R, Kammen D. (Technical Report). An assessment of battery and hydrogen energy storage systems integrated with wind energy resources

in California. Berkley, USA: University of California, Berkley; 2005.

[22] Korpaas M, Greiner C. Opportunities for hydrogen production in connection with wind power in weak grids. Renew Energy 2008;33(6):1199–208.

[23] Scorah H, Sopinka A, van Kooten GC. The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids. Energy Econ 2012;34:536–41.

[24] Schaber K, Steinke F, Hamacher T. Transmission grid extensions for the integration of variable renewable energies in Europe: who benefits where?

Energy Policy 2012;43:123–35.

[25] Järventausta P, Repo S, Rautiainen A, Partanen J. Smart grid power system control in distributed generation environment. Annu Rev Control 2010; 34(2) : 277–86.

[26] Steinke F, Wolfrum P. Grid vs. storage in a 100% renewable Europe. Renew Energy 2013;50:826–32.

[27] Denholm P. Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage. Renew Energy

2006;31(9):1355–70.

[28] Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Kallos G, Pytharoulis I. Improvements in wind speed forecasts for wind power prediction

purposes using Kalman filtering. J Wind Eng Ind Aerodyn 2008;96(12):2348–62.

[29] Ulbricht R, Fischer U, Lehner W, Donker H. Optimized renewable energy forecasting in local distribution networks. ACM Int Conf Proc Ser 2013:262–6.

[30] Liu H, Erdem E, Shi J. Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl Energy

2011;88:724–32.

[31] Jacobsen HK, Zvingilaite E. Reducing the market impact of large shares of intermittent energy in Denmark. Energy Policy 2010;38(7):3403–13.

[32] Finn P, Fitzpatrick C. Demand side management of industrial electricity

consumption: promoting the use of renewable energy through real-time pricing. Appl Energy 2014;113:11–21.

[33] Stadler I. Power grid balancing of energy systems with high renewable energy penetration by demand response. Util Policy 2008;16:90–8.

[34] Moura PS, De Almeida AT. The role of demand-side management in the grid integration of wind power. Appl Energy 2010;87:2581–8.

[35] Martinez-Duart JM, Hernandez-Moro JM, Serrano-Calle J, Gomez-Calvet S, Casanova-Molina M R. New frontiers in sustainable energy production and storage. Vacuum 2015. http://dx.doi.org/10.1016/j.vacuum.2015.05.027.

[36] Díaz-González F, Sumper A, Gomis-Bellmunt O, Villafáfila-Robles R. A review of energy storage technologies for wind power applications. Renew Sustain

Energy Rev 2012;16(4):2154–71.

[37] Hall PJ, Bain EJ. Energy-storage technologies and electricity generation. Energy Policy 2008;36(12):4352–5.

[38] Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renew Sustain

Energy Rev 2009;13(6–7):1513–22.

[39] Ibrahim H, Ilinca A. Techno-economic analysis of different energy storage technologies, energy storage - technologies and applications. In: Zobaa A,

editor. Energy storage – technologies and applications. Rijeka, Croatia: InTech; 2013 ISBN: 978-953-51-0951-8.

[40] Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: a critical review. Progr Nat Sci 2009;19(3):291–312.

[41] Zakeri B, Syri S. Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 2015;42:569–96.

[42] Dell RM, Rand DAJ. Energy storage – a key technology for global energy sustainability. J Power Sources 2001;100:2–17.

[43] Ferreira HL, Garde R, Fulli G, Kling W, Lopes JP. Characterisation of electrical energy storage technologies. Energy 2013;53:288–98.

[44] Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W. Energy storage for mitigating the variability of renewable electricity sources: an updated review. Energy Sustain Dev 2010;14(4):302–14.

[45] Lund H, Andersen AN, Østergaard PA, Mathiesen BV, Connolly D. From electricity smart grids to smart energy systems – a market operation based

approach and understanding. Energy 2012;42(1):96–102.

[46] Connolly D, Lund H, Mathiesen BV, Pican E, Leahy M. The technical and economic implications of integrating fluctuating renewable energy using

energy storage. Renew Energy 2012;43:47–60.

[47] Østergaard PA. Comparing electricity, heat and biogas storages’ impacts on renewable energy integration. Energy 2012;37(1):255–62.

[48] Mathiesen BV, Lund H, Connolly D, Wenzel H, Østergaard PA, Möller B, et al. Smart Energy Systems for coherent 100% renewable energy and transport

solutions. Appl Energy 2015;145:139–54.

[49] The Economist. Germany's energy transformation – Energiewende. London, UK: The Economist Newspaper Ltd; July 28th, 2012. 〈http://www.economist.

com/node/21559667〉 (Last accessed: 20/09/2015).

[50] Maddaloni J, Rowe A, van Kooten G. Network constrained wind integration on Vancouver Island. Energy Policy 2008;36(2):591–602.

[51] Kim J-H, Shcherbakova A. Common failures of demand response. Energy 2011;36:873–80.

[52] Zafirakis D, Chalvatzis KJ, Baiocchi G, Daskalakis G. Modeling of financial incentives for investments in energy storage systems that promote the largescale integration of wind energy. Appl Energy 2013;105:138–54.

[53] Benitez LE, Benitez PC, van Kooten GC. The economics of wind power with energy storage. Energy Econ 2008;30(4):1973–89.

[54] Grünewald PH, Cockerill TT, Contestabile M, Pearson PJG. The socio-technical transition of distributed electricity storage into future networks – system

value and stakeholder views. Energy Policy 2012;50:449–57.

[55] Toledo OM, Oliveira Filho D, ASAC Diniz. Distributed photovoltaic generation and energy storage systems: a review. Renew Sustain Energy Rev 2010;14 (1):506–11.

[56] Hill CA, Such MC, Chen D, Gonzalez J, Grady WM. Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans Smart Grid 2012;3(2):850–7.

[57] Battke B, Schmidt TS, Grosspietsch D, Hoffmann VH. A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications. Renew Sustain Energy Rev 2013;25:240–50.

[58] Deane JP, Ó Gallachóir BP, McKeogh EJ. Techno-economic review of existing and new pumped hydro energy storage plant. Renew Sustain Energy Rev

2010;14(4):1293–302.

[59] Denholm P, King JC, Kutcher CF, Wilson PPH. Decarbonizing the electric sector: combining renewable and nuclear energy using thermal storage. Energy Policy 2012;44:301–11.

[60] Electric Power Research Institute (EPRI). EPRI–DOE Handbook of energy storage for transmission and distribution applications.Palo Alto, USA: EPRI;

2003.

[61] Eyer J. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage Sandia Report SAND2009-4070. Albuquerque, USA: Sandia National Laboratories; 2009.

[62] Sundararagavan S, Baker E. Evaluating energy storage technologies for wind power integration. Sol Energy 2012;86(9):2707–17.

[63] Hasan NS, Hassan MY, Majid MS, Rahman HA. Review of storage schemes for wind energy systems. Renew Sustain Energy Rev 2013;21:237–47.

[64] Madlener R, Latz J. Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power. Appl Energy 2013;101:299–309.

[65] Tan X, Li Q, Wang H. Advances and trends of energy storage technology in Microgrid. Electr Power Energy Syst 2013;44(1):179–91.

[66] Kloess M, Zach K. Bulk electricity storage technologies for load-leveling

operation – an economic assessment for the Austrian and German power market. Int J Electr Power Energy Syst 2014;59:111–22.

[67] Kazempour SJ, Moghaddam MP, Haghifam MR, Yousefi GR. Electric energy storage systems in a market-based economy: comparison of emerging and

traditional technologies. Renew Energy 2009;34(12):2630–9.

[68] Karellas S, Tzouganatos N. Comparison of the performance of compressedair and hydrogen energy storage systems: Karpathos island case study. Renew Sustain Energy Rev 2014;29:865–82.

[69] Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J. Electrochemical energy storage for green grid. Chem Rev 2011;111(5):3577–613.

[70] Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers Manag 2009;50(5):1172–9.

[71] Larsen T, Pedersen AS, Berg B, Rudmose C, Yde L, Nielsen LH, et al. Strategy for storage and distribution of energy – a strategy for research, development, demonstration and commercialization 2015–2025 (June). Frederiksberg,

Denmark: The Danish Partnership For Hydrogen and Fuel Cells; 2015.

[72] Sandia National Laboratories and U.S. Department of Energy (DOE) Global Energy Storage Database. 〈http://www.energystorageexchange.org/〉 ((Last

accessed): 20/09/2015).

[73] Simbolotti G, R. Kempener Electricity Storage. Technology Policy Brief E18. IEA-ETSAP and IRENA; 2012.

[74] EASE (European Association for the Storage of Energy), (EERA (European Energy Research Alliance). Joint EASE/EERA recommendations for a European Energy Storage Technology Development Roadmap towards 2030 –

Technical Annex. Brussels, Belgium: EASE/EERA; 2013.

[75] Agrawal P, Nourai A, Markel L, Fioravanti R, Gordon P, Tong N, Huff G.

Characterization and assessment of novel bulk storage technologies SandiaReport SAND2011–3700. Albuquerque, USA: Sandia National Laboratories; 2011.

[76] Gravity Power. Grid Scale Energy Storage. http://www.gravitypower.net/〉 (Last accessed: 20/09/2015).

[77] Pimm AJ, Garvey SD, Drew RJ. Shape and cost analysis of pressurized fabric structures for subsea compressed air energy storage. Proc Inst Mech Eng C: J

Mech Eng Sci 2011;225(5):1027–43.

[78] Pimm AJ, Garvey SD, de Jong M. Design and testing of Energy Bags for underwater compressed air energy storage. Energy 2014;66:496–508.

[79] Hydrostor. Underwater Compressed Air Energy Storage – Islands & Microgrid White Paper; 2013. 〈http://www.homerenergy.com/microgrid-white-papers.

html〉 (Last accessed: 20/09/2015).

[80] White L. Theophilus Redivivus. Technol Cult 1964;5(2):224–33.

[81] Bitterly JG. Flywheel technology: past, present, and 21st century projections. IEEE Aerosp Electron Syst Mag 1998;13:13–6.

[82] Motor Trend. The GYROBUS: Something New Under the Sun?, Motor Trend 1952;January:37.

[83] Centre for Low Carbon Futures. Liquid air in the energy and transport systems. Opportunities for industry and innovation in the UK. University of

Birmingham; 2013.

[84] Stöver B, Alekseev A, Stiller C. Liquid Air Energy Storage (LAES) Development Status and Benchmarking with other Storage Technologies. Power-Gen Europe 2014.
1   2   3   4   5   6   7   8   9   10   11


написать администратору сайта