Главная страница
Навигация по странице:

  • 8.3.1 Уран-графитовый реактор канального типа

  • 8.3.2 Легко-водный реактор

  • полный текст. История открытия радиоактивности Предмет и задачи радиоэкологии


    Скачать 11.76 Mb.
    НазваниеИстория открытия радиоактивности Предмет и задачи радиоэкологии
    Анкорполный текст.docx
    Дата27.05.2017
    Размер11.76 Mb.
    Формат файлаdocx
    Имя файлаполный текст.docx
    ТипДокументы
    #8107
    страница10 из 14
    1   ...   6   7   8   9   10   11   12   13   14
    8.3 Ядерныи реактор
    Ядерным реактором называется устройство, в котором осуществляется контролируемая самоподдерживающаяся цепная реакция деления ядер некоторых тяжелых элементов под действием нейтронов. Впервые самоподдерживающаяся цепная реакция деления была получена 2 декабря 1942 г. в гетерогенном уран-графитовом ядерном реакторе, запущенном в США под руководством итальянского физика Э. Ферми. В СССР реактор такого же типа был запущен декабря 1946 г. под руководством академика И. В. Курчатова (110).

    В качестве топлива (источника энергии) ядерных реакторах используют, как право, обогащенный уран.

    Основными элементами атомного энергетического реактора являются активная зона, отражатель нейтронов, окружающий активную зону, стержни-поглотители нейтронов, обеспечивающие управление реактором (поддержание энергии на нужном уровне и обеспечение равномерности ее распределения по объему реактора) и аварийную защиту, биологическая защита реактора. Реактор заключен в герметичный металлический корпус (здесь же находится теплообменник). Активная зона реактора содержит в себе ядерное горючее (в реакторах на тепловых нейтронах активная зона содержит также замедлитель нейтронов и некоторые другие компоненты). В ней протекает управляемая цепная ядерная реакция и выделяется энергия деления (в основном – в виде тепловой). Выделенная энергия отводится с помощью теплоносителя. При необходимости, тепловая энергия превращается в электрическую либо с помощью тепловых преобразователей, вмонтированных непосредственно в реактор, или с помощью специального теплоносителя, уносящего тепло к внешнему электрогенератору.

    Самоподдерживающаяся реакция ядерного распада может привести к ядерному взрыву либо протекать стационарно — при определенных условиях, создаваемых в реакторах. Для этого необходимо, чтобы при делении урана-235 часть нейтронов продолжала реакцию, а часть поглощалась либо выводилась из дальнейшего участия в процессе деления. Это достигается при использовании в качестве топлива (ядерного горючего) обогащенного урана (с содержанием урана-235 около 2—3 %). Уран-238, присутствующий в обогащенном уране в избыточном количестве, поглощает лишние нейтроны, позволяя удерживать цепную реакцию под контролем, сам превращаясь при этом в плутоний-239. Таким образом, к концу срока эксплуатации реактора топливо содержит больше плутония-239, чем урана-235, выгорающего в процессе поддержания цепной реакции (63).

    Основные типы энергетических ядерных реакторов:

    -электрические ядерные реакторы АЭС (используются для выработки тепловой энергии, преобразующейся с помощью турбогенераторов в электрическую)

    -элекроэнергетические (термоэлектрические или термоэмиссионные) ядерные реакторы (с безмашинным преобразованием тепловой энергии в электрическую);

    -высокотемпературные теплоэнергетические ядерные реакторы (производят высокопотенциальную тепловую энергию, непосредственно используемую в химической или металлургической промышленности для осуществления различных химических реакций, опреснения морской воды или получения энергоносителей, например, водорода);

    -теплоэнергетические ядерные реакторы (производят тепловую энергию на атомных станциях теплоснабжения, предназначены для промышленной и бытовой теплофикации)

    Центральная область ядерного реактора, содержащая ядерное топливо, где в основном и протекает цепная реакция, называется активной зоной. Здесь происходит цепная реакция деления и выделяется основная доля тепловой энергии. Условия, необходимые для протекания самоподдерживающейся цепной реакции, создаются в каждом реакторе при вполне определенных размерах его активной зоны и количестве делящегося материала. Минимальное количество делящегося материала и минимальные размеры активной зоны, при которых в данном реакторе возможна самоподдерживающаяся цепная реакция, называются критической массой и критическими размерами этого реактора. Активная зона, как правило, окружается отражателем — слоем материала (вода, уран, графит), эффективно возвращающего нейтроны, тем самым уменьшая их утечку из реактора, что приводит к сокращению размеров активной зоны и уменьшению загрузки ядерного реактора делящимся материалом. Величина критической массы зависит от нуклидного состава отражателя и активной зоны, а также ее формы (куб, цилиндр), от вида используемого топлива и замедлителя, наличия примесей и некоторых других факторов (60, 61).

    В ядерном реакторе происходит быстрая смена поколений нейтронов. Среднее время жизни нейтронов в реакторах различных типов 10-3—10-8 с. Цепная реакция деления ядер может быть стационарной, затухающей или нарастающей в зависимости от команд оператора, управляющего реактором.

    Реактивность ядерного реактора мера возможного отклонения от критических условий, когда цепная реакция является самоподдерживающейся. Рост реактивности (например, при извлечении поглощающего стержня) вызывает нарастание цепной реакции и увеличение мощности реактора. И наоборот — уменьшение реактивности приводит к затуханию цепной реакции (например, при выгорании топлива или накоплении поглощающих осколков деления, отравляющих реактор). Чтобы создать запас реактивности, размеры активной зоны делают больше критических, и делящийся материал загружают в количестве, превышающем критическую массу, а для возмещения избыточной реактивности в активную зону предварительно вводят специальные конструкции — компенсирующие (поглощающие) стержни. В процессе работы ядерного реактора происходит выгорание топлива, когда количество делящегося материала в активной зоне уменьшается и происходит накопление продуктов деления, отравляющих реактор.

    Выгорание ядерного топлива - деление ядер урана или плутония с освобождением энергии и образованием осколочных нуклидов. Накопление большого количества продуктов деления приводит к нарушениям работы режима работы реактора. Так, среди осколочных продуктов имеются нуклиды с большим сечением захвата нейтронов (например, 135Хе, 149Sm), которые называют «нейтронными ядами». Накопление этих продуктов приводит к резкому уменьшению плотности потока нейтронов в активной зоне реактора и к прерыванию цепной ядерной реакции. Нарушения режима работы реактора могут наступить из-за накопления в ТВЭЛах газообразных продуктов деления. При высокой температуре внутри реактора накопление их приводит к резкому повышению давления внутри ТВЭЛов, к распуханию и разрушению оболочек ТВЭЛов. Вследствие этого реактор не может работать на одной загрузке до полного выгорания топлива. После определенного периода времени, называемого кампанией реактора первоначально загруженное ядерное топливо выгружают из реактора и заменяют свежим. В современных энергетических реакторах на тепловых нейтронах кампания топлива составляет 2-4 года, в реакторах на быстрых нейтронах - меньше года. Отработанное топливо направляется на переработку в целях выделения содержащихся в нем делящихся материалов и очистки от продуктов деления. Очищенные делящиеся материалы можно использовать для изготовления новых ТВЭЛов.

    Глубина выгорания топлива определяется как отношение количества израсходованного ядерного топлива к общему количеству первоначально загруженного топливного материала, выраженное в процентах, или как отношение количества выработанной энергии к количеству загруженного топлива. Запас реактивности ядерного реактора в процессе выгорания топлива снижается, поэтому для непрерывного поддержания цепной реакции из активной зоны по мере необходимости извлекают компенсирующие стержни (20,27).

    Кроме компенсирующих в реакторе обычно устанавливают стержни еще двух типов: регулирующие, предназначенные для управления работой реактора (разгоны, остановки, переходы с одного уровня мощности на другой), и стержни аварийной защиты. Последние при нормальной работе реактора находятся вне активной зоны во взведенном состоянии. При превышении допустимого значения хотя бы одного параметра (мощности, температуры, давления пара, скорости разгона) стержни аварийной защиты сбрасываются в активную зону, что приводит к немедленному прекращению цепной реакции.

    КПД современных энергетических реакторов составляет 30%. Это означает, что для обеспечения электрической мощности 1000 МВт необходим реактор с тепловой мощностью 3300 МВт, т.е. в течение одного года должно выгореть 1,3 т 235U. В реальных условиях уранового топливного цикла это значение ниже, так как существенный вклад в выработку энергии вносит образующийся при работе ядерного реактора 239Pu. По мере его накопления в топливном материале возрастает вероятность деления ядер плутония. При обычных режимах работы реакторов на тепловых нейтронах примерно половина всех актов ядерного деления приходится на долю 239Pu. Таким образом, плутоний становится полноценным ядерным топливом даже при загрузке в реактор чистого уранового топлива. Вклад плутония в вырабатываемую на АЭС энергию составляет ≈50%. С учетом деления 239Pu можно считать, что для реактора мощностью 1000 МВт (эл.) необходимо загрузить 670 кг/год 235U, что при 3%-ном обогащении соответствует 22 т U. При продолжительности кампании, равной трем годам, загрузка составляет 66 т U. Чтобы при этом обеспечить 3%-ную глубину выгорания, начальное обогащение 235U должно быть выше 3%, т.е. 3,5-4,5%. Загруженные 70 т урана нужно постепенно, в течение трех лет, заменять свежим топливом.

    Коэффициент воспроизводства - количество вторичного делящегося материала, образующегося в процессе работы, и представляет собой отношение числа образовавшихся делящихся ядер к числу выгоревших из первоначально загруженного топлива. Если коэффициент воспроизводства больше единицы, то в реакторе осуществляется расширенное воспроизводство топлива. Такие реакторы называют реакторами-размножителями. Наибольший коэффициент воспроизводства имеют реакторы на быстрых нейтронах (Для реакторов БН-600 КВ=1,4).

    В большинстве энергетических реакторов в качестве теплоносителя используется вода, либо под давлением, либо кипящая. Упомянем основные из них:

    Реактор с водой под давлением. В таких реакторах замедлителем и теплоносителем служит вода. Нагретая вода перекачивается под давлением в теплообменник, где тепло передается воде второго контура, в котором вырабатывается пар, вращающий турбину.

    Кипящий реактор. В таком реакторе кипение воды происходит непосредственно в активной зоне реактора и образующийся пар поступает в турбину. В большинстве кипящих реакторов вода используется и как замедлитель, но иногда применяется графитовый замедлитель (147).

    Реактор с жидкометаллическим охлаждением. В таком реакторе для переноса теплоты, выделяющейся в процессе деления в реакторе, используется жидкий металл, циркулирующий по трубам. Почти во всех реакторах этого типа теплоносителем служит натрий. Пар, образующийся на другой стороне труб первого контура, подается на обычную турбину. В реакторе с жидкометаллическим охлаждением могут использоваться нейтроны со сравнительно высокой энергией (реактор на быстрых нейтронах) либо нейтроны, замедленные в графите или оксиде бериллия. В качестве реакторов-размножителей более предпочтительны реакторы на быстрых нейтронах с жидкометаллическим охлаждением, поскольку в этом случае отсутствуют потери нейтронов, связанные с замедлением. Газоохлаждаемый реактор. В таком реакторе теплота, выделяющаяся в процессе деления, переносится в парогенератор газом – СО2 или гелием. Замедлителем нейтронов служит графит. Газоохлаждаемый реактор может работать при гораздо более высоких температурах, нежели реактор с жидким теплоносителем, а потому пригоден для системы промышленного теплоснабжения и для электростанций с высоким КПД.

    Гзоохлаждаемые реакторы отличаются повышенной безопасностью в работе, в частности отсутствием риска расплавления реактора.

    Гомогенные реакторы. В активной зоне гомогенных реакторов используется однородная жидкость, содержащая делящийся изотоп урана. Жидкость обычно представляет собой расплавленное соединение урана. Она закачивается в большой сферический сосуд, работающий под давлением, где в критической массе происходит цепная реакция деления. Затем жидкость подается в парогенератор. Гомогенные реакторы не получили распространения из-за конструктивных и технологических трудностей (147).

    8.3.1 Уран-графитовый реактор канального типа

    Это - бескоpпусной реактор с графитовым замедлителем, теплоноситель - вода, тепловыделяющие элементы расположены в вертикальных каналах графитовой кладки. Реакторы такого типа мощностью 1000 МВт и более в России называются РБМК (реактор большой мощности канальный).

    РБМК - тепловой одноконтурный энергетический реактор с кипением теплоносителя в каналах и прямой подачей насыщенного пара в турбины. В роли теплоносителя выступает "легкая" вода, а замедлителем является графит. Тепловая мощность реактора РБМК-1000 3200 МВт, а электрическая мощность реакторной установки 1000 МВт (61).

    В одноконтурном канальном энергетическом уран-графитовом реакторе вода при прохождении через активную зону нагревается до температуры кипения. В верхней части активной зоны образуется пар (именно кипение воды в активной зоне реактора принципиально отличает РБМК от ВВЭР). Пароводная смесь поступает в сепаратор, где делится на воду, возвращающуюся на вход реактора, и пар, идущий на турбину. Конденсат пара из конденсатора турбины направляют через подогреватели низкого давления в деаэратор, а затем в реактор. Неконденсирующиеся газы из конденсатора турбины выбрасывают в систему вентиляции (рис.29.).

    file:rbmk reactor schematic rus.svg Рисунок 29. Общая схема реактора РБМК (149).

    В самом общем виде реактор представляет собой цилиндр составленный из графитовых блоков, помещенный в бетонную шахту. Реактор окружен боковой биологической защитой в виде кольцевого бака с водой. Этот цилиндр пронизывают 1693 топливных канала, представляющих собой трубки из сплава циркония диаметром 88 мм и толщиной 4 мм. В топливном канале устанавливается тепловыделяющая сборка (ТВС). Активная зона реактора - вертикальный цилиндр диаметром 11.8 метров и высотой 7 метров. По периферии активной зоны, а также сверху и снизу расположен боковой отражатель - сплошная графитовая кладка толщиной 0.65 метра. Собственно активная зона собрана из графитовых шестигранных колонн (всего их 2488), составленных из блоков сечением 250х250 мм. По центру каждого блока сквозь всю колонну проходят сквозные отверстия диаметром 114 мм для размещения технологических каналов и стержней управления защитой (45).

    http://upload.wikimedia.org/wikipedia/commons/a/a9/rbmk_reactor_from_ignalina.pngРисунок 30. Внешний вид зоны размещения реактора РБМК (150).

    Ядерным топливом служит диоксид урана (UO2), обогащенный 235U до 2%, в виде таблеток диаметром 11,5 мм запрессованных в ТВЭЛы - трубки из сплава на основе циркония с наружным диаметром 13,6 мм с толщиной стенок 0,9 мм. 18 таких ТВЭЛов смонтированы в одну общую тепловыделяющую сборку. ТВС в РБМК состоят из двух частей верхней и нижней. Помимо ТВЭЛов, ТВС содержит крепежные детали из сплава циркония и несущий стержень их оксида ниобия. Две последовательно соединенных тепловыделяющих сборки, длина каждой из которых (т.е. высота столбика таблеток) 3,5 м образуют тепловыделяющую кассету. Стенки кассеты плотно фиксированы к графитовой кладке. Кассета помещается в вертикально расположенную трубу (технологический канал), по ней прокачивается охлаждающая вода, которая превращается в пар непосредственно в ядерном реакторе (150).

    Система теплосъема реактора одноконтурная - вырабатываемый пар под давлением 65 атм и при температуре 2800 подается на турбины. Активная зона имеет высоту 7 м, диаметр около 12 м, в ней находится 1690 рабочих каналов, содержащих примерно 200 т урана. Тепловая мощность реактора - 3200 МВт, электрическая - 1000 МВт. Одним из преимуществ РБМК пред ВВЭР, является возможность перегрузки выгоревшего топлива без остановки реактора. Загрузка топлива в реактор осуществляется с помощью разгрузочно-загрузочной машины .

    Характерная особенность канальных реакторов - возможность регулирования и контроля расхода теплоносителя по каждому каналу. Это позволяет получать на выходе всех каналов примерно одинаковые теплотехнические параметры и иметь минимально необходимый расход теплоносителя через реактор (рис. 30).

    Теплоноситель, вода, движется в каналах снизу вверх, омывая ТВС и снимая тепловую энергию. Реакторная установка РБМК- 1000 является одноконтурной по теплоносителю, поскольку вода пройдя реактор, нагревшись и частично испарившись, в виде пара поступает в турбину и, совершив работу, снова возвращается в реактор. Но в тепловой схеме функционируют два тепловых контура, со своими источниками и потребителями тепловой энергии.

    Первоначально проект РБМК был разработан на электрическую мощность 1000 МВт и тепловую 3200 МВт. Путем интенсификации теплообмена удалось увеличить предельно допустимую мощность канала в 1,5 раза до 4500 кВт при одновременном повышении допустимого паросодержания до нескольких десятков процентов. Необходимая интенсификация теплообмена достигнута благодаря разработке ТВС, в конструкции которой предусмотрены интенсификаторы теплообмена. При увеличении допустимой мощности канала до 4500 кВт тепловая мощность реактора РБМК повышена до 4800 МВт, чему соответствует электрическая мощность 1500 МВт. Такой реактор РБМК-1500 работает на Игналинской АЭС (Литва).

    8.3.2 Легко-водный реактор

    Это - корпусной реактор, использующий в качестве замедлителя и теплоносителя обычную воду. В России это реакторы типа ВВЭР-1000 (водо-водяной энергетический реактор). Реакторы водо-водяного типа с обычной («легкой») водой под давлением нашли широкое развитие в России. Весьма привлекательны дешевизна используемого в них теплоносителя-замедлителя и относительная безопасность в эксплуатации, несмотря на необходимость использования в этих реакторах обогащенного урана. Реактор ВВЭР-1000 представляет собой второе поколение легководных реакторов большой мощности. Электрическая мощность энергоблоков составляет 1000 МВт. Ядерные реакторы этого типа установлены на Кольской, Калининской, Балаклавской АЭС (Россия), Запорожской, Ровенской, Хмельницкой, Южно-Украинской АЭС (Украина), также на АЭС Болгарии, Чехии, Финляндии.

    Реактор с водой под давлением - легководный реактор, в котором вода находится под давлением, достаточным для предотвращения ее закипания и в то же время обеспечивающим высокую температуру теплоносителя (более 300°С).

    Тепловая энергия, вырабатываемая в активной зоне реактора, передается от т вэлов теплоносителю (воде) первого контура. Теплоноситель поступает в теплообменники (парогенераторы), где отдает энергию во второй контур. Образующийся во втором контуре пар приводит в действие турбогенератор. В западных странах этот тип реактора обозначают PWR. Эксплуатирующиеся в России водо-водяные энергетические реакторы (ВВЭР) относятся к типу реакторов с водой под давлением.

    http://i064.radikal.ru/1201/99/8a6dfd05e2f5.jpgрисунок 31. Общая схема функционирования реактора ВВЭР (151).

    ВВЭР - водо-водяной энергетический реактор. Корпусной энергетический реактор, теплоносителем и замедлителем, в котором служит некипящая вода под давлением (148).

    В энергетических реакторах корпусного типа ВВЭР (водо-водяной энергетический реактор) в качестве замедлителя нейтронов и теплоносителя используется обычная вода (гетерогенный реактор). Активная зона помещается в один общий корпус, через который прокачивается вода. Используется двухконтурная схема теплоотвода. В первом контуре циркулирует вода под давлением 160 атм при температуре на выходе из реактора 3250 С. В парогенераторах тепло передается воде второго контура, которая превращается в пар, подаваемый под давлением 60 атм на турбины.

    Первый контур, реакторный, полностью изолирован от второго, что уменьшает радиоактивные выбросы в атмосферу. Циркуляционные насосы прокачивают воду через реактор и теплообменник (питание циркуляционных насосов происходит от турбины). Вода реакторного контура находится под повышенным давлением, поэтому, несмотря на ее высокую температуру (293о - на выходе, 267о - на входе в реактор), её закипания не происходит. Вода второго контура находится под обычным давлением, так что в теплообменнике она превращается в пар. В теплообменнике-парогенераторе теплоноситель, циркулирующий по первому контуру, отдает тепло воде второго контура. Пар, генеруемый в парогенераторе, по главным паропроводам второго контура поступает на турбины и, отдает часть своей энергии на вращение турбины, после чего поступает в конденсатор. Конденсатор, охлаждаемый водой циркуляционного контура (так сказать, третий контур), обеспечивает сбор и конденсацию отработавшего пара. Конденсат, пройдя систему подогревателей, подается снова в теплообменник. Диаметр активной зоны 3,12 м, высота 3,5 м, загрузка природного урана 66 т, обогащение 235U до 3-4%.

    В корпусном кипящем реакторе активная зона размещена в высокопрочном, толстостенном стальном баке (Рис.32). Реактор состоит из корпуса с крышкой и уплотняющими элементами; корзины, в которой размещаются тепловыделяющие сборки (ТВС) с тепловыделяющими элементами (ТВЭЛами); теплового экрана; органов системы управления; тепловой и биологической защиты (43).

    http://img11.nnm.me/e/d/2/4/b/61ae7b686d8e97715d46ab8b413_prev.jpg Рисунок 32. Внешний вид реакторной зоны (152).

    Корпус реактора является одним из ответственных конструктивных элементов и должен обеспечить абсолютную надежность и полную герметичность как в обычных условиях работы, так и при возможных аварийных ситуациях. Корпус полностью заполнен водой под высоким давлением (12,5 МПа и более). Корпус должен быть прочным, хорошо противостоять коррозионному и эрозийному воздействию теплоносителя и ионизирующих излучений.

    Вода подается в реактор снизу под давлением. Сверху реактор закрыт стальной крышкой, герметизирующей его корпус и являющейся биозащитой. Для предотвращения перегрева топлива в случае обезвоживания активной зоны смонтирована система, позволяющая быстро залить активную зону водным раствором борной кислоты. При этом не только охлаждаемая сама активная зона, но и прекращается цепная реакция деления.

    Активная зона состоит из 163 ТВС шестигранной формы ТВЭЛами. Твэлы реактора собирают в тепловыделяющие сборки, ТВС, для удобства их перегрузки и транспортировки. ТВС шестигранной формы (163 штуки) расположены в середине активной зоны с шагом 20 - 25 см. Все ТВС в активной зоне монтируются в корзине. Корзина удерживает ТВС в определенном положении и распределяет поток теплоносителя через них. Некоторые ТВС дополнены сверху поглотителем из бороциркониевого сплава и нитрида бора и способны находится в активной зоне или бороциркониевой частью, или урановой - таким образом осуществляется регулирование цепной реакции (147).

    Между ТВС активной зоны размещают устройства, поглощающие нейтроны, - это стержни системы регулирования (в 61 ТВС установлены органы регулирования реактора, каждый из 18 поглощающих элементов). Со времени пуска в эксплуатацию АЭС с ВВЭР конструкции ТВС претерпели значительные изменения. На первоначальном этапе проектирования и эксплуатации ТВС были с защитной оболочкой, т. е. чехловые (типа ВВЭР-440), затем появились сборки с перфорированным чехлом. В настоящее время преимущество отдано бесчехловым ТВС, что улучшило перемешивание теплоносителя в активной зоне, уменьшило зазор между соседними ТВС и позволило разместить в одном и том же объеме корпуса большее количество ТВС, увеличив увеличить мощность реактора; снизить неравномерность энерговыделения за счет плотной упаковки твэлов. Одновременно было уменьшено гидравлическое сопротивление ТВС; повышена надежность охлаждения в аварийных режимах, связанных с течью теплоносителя за счет поперечной растечки воды из системы аварийного охлаждения, увеличено количество регулируемых стержней на одну ТВС с целью повышения прочностных свойств силового каркаса сборки и снижения количества приводов системы управления защитой, а также снижено количество дорогостоящего материала (циркония), применяемого в ТВС.

    Компенсация выгорания и медленных изменений реактивности производится варьированием концентрации борной кислоты в теплоносителе. В 42 периферийных ТВС установлены стержни с выгорающим поглотителем. Они предназначены для выравнивания поля энерговыделения и снижения размножающих свойств у периферийных ТВС, с обогащением топлива 4,4 % в начале кампании. Общее количество ТВС в активной зоне ВВЭР-1000 шт., из них с регулирующими, стержнями 109 шт. В топливных таблетках для реакторов ВВЭР-440 и ВВЭР-1000 в качестве выгорающего поглотителя используется гадолиний (содержание оксида гадолиния варьируется в интервале 3 – 8% масс).

    1   ...   6   7   8   9   10   11   12   13   14


    написать администратору сайта