измерение сопротивлений токопроводящих моделей при помощи моста Уитстона. ЛР8. Измерение сопротивлений токопроводящих моделей
Скачать 0.63 Mb.
|
МИНОБРНАУКИ РОССИИ Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) Кафедра физики отчет по лабораторной работе №8 по дисциплине «физика» Тема: измерение сопротивлений токопроводящих моделей при помощи моста Уитстона
Санкт-Петербург 2019 Цель работы: ознакомление с методом измерения сопротивлений при помощи моста постоянного тока; приобретение навыков расчета сопротивления проводников переменного сечения; определение удельных сопротивлений материалов токопроводящих моделей. Приборы и принадлежности: стенд для сборки измерительной цепи; токопроводящие модели; магазины образцовых сопротивлений; нуль-индикатор (гальванометр); источник тока. Основные теоретические положения. Сопротивление проводников зависит от их формы и размеров, от рода вещества и его состояния. Для проводников в форме цилиндров постоянного поперечного сечения сопротивление равно:
где l и S - длина и сечение проводника, соответственно; - удельное сопротивление материала проводника. Удельное сопротивление является одной из основных электрических характеристик вещества. Оно определяется тока в веществе при заданной величине напряженности электрического поля (закон Ома в дифференциальной форме):
а также удельную тепловую мощность тока , т.е. количество тепла, выделяющегося в единицу времени в единицу объема (закон Джоуля - Ленца в дифференциальной форме):
Зная значение , можно рассчитать размеры проводника, требуемые для получения заданного его сопротивления, или наоборот – значение сопротивления при известных геометрических размерах проводника. Выражение (1) имеет ограниченное применение: оно не пригодно для проводников переменного сечения, в которых плотность тока не одинакова в любом сечении, например, при расчете сопротивления утечки цилиндрического конденсатора, заполненного проводящей средой. Расчет таких сопротивлений производят, разбивая (руководствуясь соображениями симметрии) проводники (или проводящую среду) на множество элементов длиной и поперечным сечением так, чтобы плотность тока в любой точке отдельного элемента была одинаковой. Сопротивление каждого отдельного элемента равно , а сопротивление проводника на участке от до будет
где S - поперечное сечение проводника, представленное в виде некоторой функции от . Если такое разбиение невозможно, или зависимость S от слишком сложна, используют подобие электрического поля в однородной проводящей среде с током электростатическому полю в диэлектрике при условии, что удельное сопротивление проводящей среды много больше удельного сопротивления материала электродов. Иначе говоря, распределение потенциала в проводящей среде с током окажется таким же, что и в диэлектрике (или вакууме), если, не меняя размеров и формы электродов, их взаимного расположения и разности потенциалов между ними, проводящую среду заменить диэлектрической. При этом выполняется соотношение
где R - сопротивление утечки между двумя электродами в проводящей среде с удельным сопротивлением ; C - емкость конденсатора, образованного этими же электродами в среде с относительной диэлектрической проницаемостью . Таким образом, расчет сопротивления утечки между электродами в проводящей среде можно свести к расчету емкости конденсатора, образованного этими же электродами, т.е., по существу, к задаче электростатики. Расчет емкости конденсатора производится по формуле , где Q - заряд на одном из электродов; - разность потенциалов между электродами. Выражение для получается из связи напряженности E и потенциала электрического поля (E = –grad):
где El - проекция вектора Е на направление l, вдоль которого производится интегрирование. Выражение для El, подставляемое в формулу (3), находится по принципу суперпозиции напряженностей электрических полей E1 и E2 создаваемых зарядами электродов Q и -Q, либо по теореме Гаусса: , В результате расчета получается выражение для , представленное функцией заряда Q, геометрических размеров, формы и взаимного расположения электродов. В этом выражении коэффициент пропорциональности перед и - есть величина, обратная емкости конденсаторы, образованного электродами. Формула для расчета сопротивления утечки между электродами в проводящей среде получается из соотношения (2). Следует также отметить, что из-за подобия распределения полей в проводящей среде и в диэлектрике проводящая среда с током может служить моделью для исследования электростатических полей. Например, вместо трудоемких расчетов или непосредственного измерения емкости какой-либо системы проводников сложной формы поместить модели этих проводников в проводящую среду, измерить сопротивление между ними, а затем найти емкость, используя соотношение (2). Во многих случаях такая методика оказывается предпочтительнее. |