хм11. Изомерия оксикислот зависит от нескольких причин
Скачать 271.99 Kb.
|
Изомерия оксикислот зависит от нескольких причин: 1) от наличия прямой или в той или иной степени разветвленной цепи атомов углерода в ее молекуле; 2) от положения спиртовой группы в цепи атомов углерода. В зависимости от положения гидроксила различают a-оксикислоты, b-ок-сикислоты, g - оксикислоты и т. д. Так, оксимасляная кислота существует в виде трех изомеров: 3) зеркальная изомерия: Зеркальная изомерия – это вид пространственной изомерии, зависящий от различного расположения в пространстве четырех различных групп вокруг асимметрического атома углерода и характеризующийся тем, что оба изомера похожи один на другой так же, как предмет и его зеркальное изображение. Оптической активностью обладают такие органические структуры, которые содержат в своем составе ассиметрический атом углерода, то есть атом углерода, связанный с четырьмя различными группами атомов. Одни формы оптически активных веществ вращают плоскость поляризации вправо, они называются правовращающими и обозначаются d (+). Другие формы того же вещества вращают плоскость поляризации влево, называются левовращающими и обозначаются l (-). Смесь равных количеств лево- и правовращающей формы называется рацематом, который не обладает оптической активностью. Асимметрический атом углерода – это атом углерода, связанный с четырьмя различными группами атомов. В формулах асимметричный атом углерода обозначают звездочкой: В формуле одного изомера гидроксил обращен вправо, а атом водорода – влево, тогда как в формуле другого изомера гидроксил обращен влево, а атом водорода – вправо. Различие формул можно заметить и иначе. Обозначим в одной формуле стрелкой направление заместителей от атома водорода через карбоксил к гидроксилу – направление это соответствует ходу часовой стрелки. Если теперь проследить в том же порядке расположение атома водорода, карбоксила и гидроксила в другой формуле и соединить их стрелкой, то эта стрелка будет направлена против хода часовой стрелки. Холин(триметил-2-гидроксиэтиламмоний) — структурный элемент сложных липидов. Имеет большое значении, как витаминоподобное вещество, регулирующее жировой обмен. В организме холин может образоваться из аминокислоты серина. При этом сначала в результате декарбоксилирования серина получается 2-аминоэтанол (коламин), который затем подвергается исчерпывающему метилированию при участии S-аденозилметионина (SAM). В результате окисления свободного холина in vivo образуется биполярный ион бетаин, который может служить источником метильных групп в реакциях трансметилирования. Биологическая роль сложных эфиров холина. Замещенные фосфаты холина являются структурной основой фосфолипидов - важнейшего строительного материала клеточных мембран. Сложный эфир холина и уксусной кислоты - ацетилхолин - наиболее распространенный посредник при передаче нервного возбуждения в нервных тканях (нейромедиатор). Он образуется в организме при ацетилировании холина с помощью ацетил кофермента А. При ингибировании ацетилхолинэстеразы ацетилхолин накапливается в организме, что приводит к непрерывной передаче нервных импульсов и соответственно непрерывному сокращению мышечной ткани. На этом основано действие инсектицидов (химических средств уничтожения насекомых) и нервно паралитических ядов - зарина, табуна - фосфорорганических соединений, которые, реагируя с остатком серина, содержащимся в активном центре ацетилхолинэстеразы, ингибируют действие этого фермента. В медицинской практике используется ряд производных холина. Ацетилхолин хлорид применяется в качестве сосудорасширяющего средства. Карбамоилхолинхлорид (карбахолин) - холинуретан, сложный эфир холина и карбаминовой кислоты, не гидролизуется холинэстеразой и поэтому активнее холина и обладает более продолжительным действием. Дитилин - сложный эфир холина и янтарной кислоты, оказывает мышечно-расслабляющий эффект. К аминофенолам относятся соединения, в которых функциональные группы NH2 и OH присоединены к бензольному кольцу. Биологическая роль сложных эфиров холина. Катехоламины: адреналин,норадреналин и дофамин Катехоламины, обнаруживаемые в организме человека, являются в основном нейротрансмиттерами, то есть веществами, ответственными за передачу информации между нервными клетками. Они имеют структуру моноаминов и образуются в организме из тирозина, который является одной из аминокислот. Катехоламины нельзя получить с пищей, организм должен синтезировать их самостоятельно из белков. Наиболее важные вещества, относящиеся к катехоламинам: адреналин; норадреналин; допамин. Эти соединения в основном вырабатываются медуллярными клетками надпочечников и ганглиями симпатической нервной системы. Дофамин является активным нейромедиатором в центральной нервной системе и в значительной степени синтезируется в стволе мозга. Катехоламины — водорастворимые химические соединения. Они могут транспортироваться с кровью в растворенном виде в плазме. Благодаря этому адреналин может проникать в различные органы организма, выполняя гормональную функцию. Многие стимулирующие препараты являются аналогами катехоламинов. Например, в эту группу входят производные амфетамина. Катехоламины — воздействие на организм Уровень катехоламинов в организме повышается в стрессовых ситуациях. Эти вещества ответственны за запуск реакции «бей или беги». Под их влиянием, в ответ на стрессовые воздействия организм готовится к значительным физическим нагрузкам. Этот механизм развился у наших предков, которым приходилось охотиться и бороться за выживание. Повышение концентрации катехоламинов может быть вызвано психологическими ситуациями или стрессовыми факторами окружающей среды, такими как усиление звука или интенсивное освещение. Повышение уровня катехоламинов в организме вызывает: повышение артериального давления; увеличение сердечного ритма; повышение уровня глюкозы в крови. Дофамин – гормон, нейромедиатор, улучшает доставку кислорода, усиливает силу сердечных сокращений, работу почек, влияет на двигательную активность. Дофамин-гормон вырабатывается мозговым веществом надпочечников, а дофамин-нейромедиатор - областью среднего мозга, называемой «черным телом». Дофамин-нейромедиатор. Известны четыре «дофаминовых пути» - проводящих пути мозга, в которых роль переносчика нервного импульса играет дофамин. Один из них - мезолимбический путь - считается ответственным за продуцирование чувств удовольствия. Считается, что дофамин также участвует в процессе принятия человеком решений. По крайней мере, среди людей с нарушением синтеза/транспорта дофамина многие испытывают затруднения с принятием решений. Это связано с тем, что дофамин отвечает за «чувство награды», которое зачастую позволяет принять решение, обдумывая то или иное действие ещё на подсознательном уровне. Адреналин или метиламиноэтанолпирокатехин, образуется в надпочечниках и является гормоном, реализующим реакции типа «бей или беги». Его секреция резко повышается при стрессовых состояниях, пограничных ситуациях, ощущении опасности, при тревоге, страхе, при травмах, ожогах и шоковых состояниях. Адреналин: • усиливает и учащает сердцебиение • вызывает сужение сосудов мускулатуры, брюшной полости, слизистых оболочек • расслабляет мускулатуру кишечника, и расширяет зрачки.. Основная задача адреналина - адаптировать организм к стрессовой ситуации. Адреналин улучшает функциональную способность скелетных мышц. При продолжительном воздействии адреналина отмечается увеличение размеров миокарда и скелетных мышц. Вместе с тем длительное воздействие высоких концентраций адреналина приводит к усиленному белковому обмену, уменьшению мышечной массы и силы, похуданию и истощению. Это объясняет исхудание и истощение при дистрессе (стрессе, превышающем адаптационные возможности организма). Адреналин повышает кровяное давление, в связи с чем стрессы могут способствовать стойкому повышению давления и заболеванию сердечно-сосудистой системы. Адреналин часто применяют в качестве кровоостанавливающего средства. Получают его из надпочечников, а также синтетически из пирокатехина. Интересно, что лишь левовращающий (природный) адреналин обладает биологической активностью, тогда как правовращающий биологически неактивен. Норадреналин - гормон и нейромедиатор. Норадреналин также повышается при стрессе, шоке, травмах, тревоге, страхе, нервном напряжении. В отличие от адреналина, основное действие норадреналина заключается исключительно в сужении сосудов и повышении артериального давления. Сосудосуживающий эффект норадреналина выше, хотя продолжительность его действия короче. И адреналин, и норадреналин способны вызывать тремор - то есть дрожание конечностей, подбородка. Особенно ясно эта реакция проявляется у детей возраста 2-5 лет, при наступлении стрессовой ситуации. Непосредственно после определения ситуации как стрессовой, гипоталамус выделяет в кровь кортикотропин (адренокортикотропный гормон), который, достигнув надпочечников, побуждает синтез норадреналина и адреналина. Гидрокси- и аминокислоты. Реакции циклизации. Лактоны, лактамы и их гидролиз. Реакции элиминирования бетта-гидрокси- и бетта-аминокислот. ( молочная бетта- и гамма-гидроксимасляные ) двухосновные (яблочная, винная) трехосновная (лимонная) гидроксикислоты. Гидрокси- и амино кислоты. Реакции циклизации. Лактоны, лактамы и их гидролиз. Р-ии элиминирования гидрокси и аминокислот. Одноосновные (молочная и гидроксимасляная) двуосновные (яблочная,винная) , трехосновные лимонная) гидроксикислоты .Γ-гидрокси- и γ-аминокислоты. Реакции циклизации. Лактоны, лактамы. Лактим-лактамная таутомерия. |