Ответы на вопросы по ревью 4. Java io. Ключевым понятием здесь является понятие потока
Скачать 1.93 Mb.
|
Сериализация объектовСериализация объектов Java позволяет вам взять любой объект, который реализует интерфейс Serializable и включит его в последовательность байт, которые могут быть полностью восстановлены для регенерации оригинального объекта. Это также выполняется при передаче по сети, что означает, что механизм сериализации автоматически поддерживается на различных операционных системах. То есть, вы можете создать объект на машине с Windows, сериализовать его и послать по сети на Unix машину, где он будет корректно реконструирован. Вам не нужно будет беспокоиться о представлении данных на различных машинах, порядке следования байт и любых других деталях. Сама по себе сериализация объектов очень интересна, потому что это позволяет вам реализовать устойчивую живучесть. Помните, что живучесть означает, что продолжительность жизни объектов не определяется тем, выполняется ли программа — объекты живут в промежутках между вызовами программы. Вы берете сериализованный объект и записываете его на диск, затем восстанавливаете объект при новом вызове программы, таким образом, вы способны обеспечить эффективную живучесть. Причина названия “устойчивая” в том, что вы не можете просто определить объект, используя какой-либо вид ключевого слова “устойчивый”, и позволить системе заботиться о деталях (хотя это может случиться в будущем). Вместо этого вы должны явно сериализовать и десериализовать объекты в вашей программе. Сериализация объектов была добавлена в язык для поддержки двух главных особенностей. Удаленный вызов методов (RMI) в Java позволяет объектам существовать на другой машине и вести себя так, как будто они существуют на вашей машине. Когда посылается сообщение удаленному объекту, необходима сериализация объекта для транспортировки аргументов и возврата значений. RMI обсуждается в Главе 15. Сериализация объектов так же необходима для JavaBeans, описанных в Главе 13. Когда используется компонент (Bean), информация о его состоянии обычно конфигурируется во время дизайна. Эта информации о состоянии должна сохранятся, а затем восстанавливаться, когда программа запускается; cериализация объектов выполняет эту задачу. Сериализация объекта достаточно проста, если объект реализует интерфейс Serializable (этот интерфейс похож на флаг и не имеет методов). Когда сериализация была добавлена в язык, многие стандартные библиотеки классов были изменены, чтобы сделать их сериализованными, включая все оболочки примитивных типов, все контейнерные классы и многие другие. Даже объект Class может быть сериализован. (Смотрите Главу 12 о реализации этого.) Для сериализации объекта вы создаете определенный сорт объекта OutputStream, а затем вкладываете его в объект ObjectOutputStream. После этого вам достаточно вызвать writeObject( ) и ваш объект будет сериализован и послан в OutputStream. Чтобы провести обратный процесс, вы вкладываете InputStream внутрь ObjectInputStream и вызываете readObject( ). То, что приходит, обычно это ссылка на родительский Object, так что вы должны выполнить обратное приведение, чтобы сделать вещи правильными. Особенно полезное свойство сериализации объектов состоит в том, что при этом сохраняется не только образ объекта, а за ним также следуют все ссылки, содержащиеся в вашем объекте. Эти объекты также сохраняются, а за ними следуют все ссылки из каждого объекта, и т.д. Иногда это называется “паутиной объектов”, так как единственный объект может быть присоединен к чему-то, и может содержать массив ссылок на объекты точно так же, как и на члены объектов. Если вы поддерживаете собственную схему сериализации объектов, код, поддерживающий все эти ссылки, может свести с ума. Однако сериализация объектов в Java, по видимому, осуществляет это безупречно, используя, несомненно, оптимизированный алгоритм, который исследует всю паутину объектов. Следующий пример проверяет механизм сериализации, создавая “цепочку” связанных объектов, каждый из которых имеет ссылку на следующий сегмент цепочки точно так же, как и массив ссылок указывает на объекты различных классов: //: c11:Worm.java // Демонстрация сериализации объектов. import java.io.*; class Data implements Serializable { private int i; Data(int x) { i = x; } public String toString() { return Integer.toString(i); } } public class Worm implements Serializable { // Генерируется случайно значение типа int: private static int r() { return (int)(Math.random() * 10); } private Data[] d = { new Data(r()), new Data(r()), new Data(r()) }; private Worm next; private char c; // Значение i == Номеру сегмента Worm(int i, char x) { System.out.println(" Worm constructor: " + i); c = x; if(--i > 0) next = new Worm(i, (char)(x + 1)); } Worm() { System.out.println("Default constructor"); } public String toString() { String s = ":" + c + "("; for(int i = 0; i < d.length; i++) s += d[i].toString(); s += ")"; if(next != null) s += next.toString(); return s; } // Исключение выбрасывается на консоль: public static void main(String[] args) throws ClassNotFoundException, IOException { Worm w = new Worm(6, 'a'); System.out.println("w = " + w); ObjectOutputStream out = new ObjectOutputStream( new FileOutputStream("worm.out")); out.writeObject("Worm storage"); out.writeObject(w); out.close(); // Также очищается вывод ObjectInputStream in = new ObjectInputStream( new FileInputStream("worm.out")); String s = (String)in.readObject(); Worm w2 = (Worm)in.readObject(); System.out.println(s + ", w2 = " + w2); ByteArrayOutputStream bout = new ByteArrayOutputStream(); ObjectOutputStream out2 = new ObjectOutputStream(bout); out2.writeObject("Worm storage"); out2.writeObject(w); out2.flush(); ObjectInputStream in2 = new ObjectInputStream( new ByteArrayInputStream( bout.toByteArray())); s = (String)in2.readObject(); Worm w3 = (Worm)in2.readObject(); System.out.println(s + ", w3 = " + w3); } } ///: Файл, который создает и сериализует объект Alien, содержится в том же директории: //: c11:FreezeAlien.java // Создает файл сериализации. import java.io.*; public class FreezeAlien { // Выбрасывает исключение на консоль: public static void main(String[] args) throws IOException { ObjectOutput out = new ObjectOutputStream( new FileOutputStream("X.file")); Alien zorcon = new Alien(); out.writeObject(zorcon); } } ///: Эта программа открывает файл и успешно читает объект mystery. Однако, как только вы попробуете найти что-нибудь об объекте — что требует Class объекта для Alien — виртуальная машина Java (JVM) не сможет найти Alien.class (если он не будет указан в Classpath, чего не должно случится в этом примере). Вы получите ClassNotFoundException. (Еще раз: все свидетельства иной жизни исчезнут прежде, чем доказательства ее существования могут быть проверены!) Если вы хотите многое сделать после восстановления объекта, который был сериализован, вы должны убедится, что JVM может найти соответствующий .class либо по локальному пути классов, либо где-то в Internet. Управление сериализациейКак вы можете видеть, стандартный механизм сериализации тривиален в использовании. Но что, если вам нужны специальные требования? Может быть, вы имеете особые требования по безопасности и вы не хотите сериализовать часть вашего объекта, или, может быть, не имеет смысла сериализовать один из подобъектов, если эта часть будет вновь создана при восстановлении объекта. Вы можете управлять процессом сериализации, реализовав интерфейс Externalizable вместо интерфейса Serializable. Интерфейс Externalizable расширяет интерфейс Serializable и добавляет два метода: writeExternal( ) и readExternal( ), которые автоматически вызываются для вашего объекта во время сериализации и десериализации, так что вы можете выполнить специальные операции. Следующий пример показывает простую реализацию методов интерфейса Externalizable. Обратите внимание, что Blip1 и Blip2 почти идентичны, за исключением тонких различий (проверьте, сможете ли вы найти их в коде): //: c11:Blips.java // Простое использование Externalizable & ловушка. import java.io.*; import java.util.*; class Blip1 implements Externalizable { public Blip1() { System.out.println("Blip1 Constructor"); } public void writeExternal(ObjectOutput out) throws IOException { System.out.println("Blip1.writeExternal"); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { System.out.println("Blip1.readExternal"); } } class Blip2 implements Externalizable { Blip2() { System.out.println("Blip2 Constructor"); } public void writeExternal(ObjectOutput out) throws IOException { System.out.println("Blip2.writeExternal"); } public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { System.out.println("Blip2.readExternal"); } } public class Blips { // Исключения выбрасываются на консоль: public static void main(String[] args) throws IOException, ClassNotFoundException { System.out.println("Constructing objects:"); Blip1 b1 = new Blip1(); Blip2 b2 = new Blip2(); ObjectOutputStream o = new ObjectOutputStream( new FileOutputStream("Blips.out")); System.out.println("Saving objects:"); o.writeObject(b1); o.writeObject(b2); o.close(); // Теперь получаем их обратно: ObjectInputStream in = new ObjectInputStream( new FileInputStream("Blips.out")); System.out.println("Recovering b1:"); b1 = (Blip1)in.readObject(); // OOPS! Выброшено исключение: //! System.out.println("Recovering b2:"); //! b2 = (Blip2)in.readObject(); } } ///: Поля s и i инициализируются только во втором конструкторе, но не в конструкторе по умолчанию. Это значит, что если вы не инициализируете s и i в readExternal( ), они будут равны null (так как хранилище объектов заполняется нулями при первом шаге создания объектов). Если вы закомментируете две строки кода, следующих за фразой “Вы обязаны сделать это”, и запустите программу, вы увидите, что при восстановлении объекта s равно null, а i равно нулю. Если вы наследуете от объекта с интерфейсом Externalizable, обычно вы будете вызывать методы writeExternal( ) и readExternal( ) базового класса для обеспечения правильного хранения и восстановления компонент базового класса. Таким образом, чтобы сделать все правильно, вы должны не только записать важные данные из объекта в методе writeExternal( ) (здесь нет стандартного поведения, при котором записывается любой член объекта с интерфейсом Externalizable), но вы также должны восстановить эти данные в методе readExternal( ). Сначала это может немного смущать, потому что поведение конструктора по умолчанию объекта с интерфейсом Externalizable может представить все, как некоторый вид автоматического сохранения и восстановления. Но это не так. Ключевое слово transientКогда вы управляете сериализацией, возможно появление определенных подобъектов, для который вы не захотите применять механизм сериализации Java для автоматического сохранения и восстановления. В основном это происходит в том случае, если такой подобъект представляет важную информацию, которую вы не хотите сериализовать, например, пароль. Даже если такая информация имеет модификатор private в объекте, так как она сериализуется, то кто-либо может получить доступ для чтения файла или перехватить сетевую передачу. Один способ предохранения важной части вашего объекта от сериализации, заключающий в реализации Externalizable, показан в предыдущем разделе. Но при этом ничего автоматически не сериализуется и вы должны явно сеарилизовать только нужные вам части внутри writeExternal( ). Однако если вы работаете с Serializable объектом, вся сериализация происходит автоматически. Для управления этим, вы можете выключить сериализацию полей индивидуально, используя ключевое слово transient, которое говорит: “Не беспокойтесь о сохранении и восстановлении этого — я позабочусь об этом”. В качестве примера рассмотрим объект Login, хранящий информацию об определенной сессии подключения. Предположим, что как только вы проверили имя пользователя, вы хотите сохранить данные, но без пароля. Простейшим способом является реализация Serializable и пометка поля password ключевым словом transient. Вот как это выглядит: //: c11:Logon.java // Демонстрация ключевого слова "transient". import java.io.*; import java.util.*; class Logon implements Serializable { private Date date = new Date(); private String username; private transient String password; Logon(String name, String pwd) { username = name; password = pwd; } public String toString() { String pwd = (password == null) ? "(n/a)" : password; return "logon info: \n " + "username: " + username + "\n date: " + date + "\n password: " + pwd; } public static void main(String[] args) throws IOException, ClassNotFoundException { Logon a = new Logon("Hulk", "myLittlePony"); System.out.println( "logon a = " + a); ObjectOutputStream o = new ObjectOutputStream( new FileOutputStream("Logon.out")); o.writeObject(a); o.close(); // Задержка: int seconds = 5; long t = System.currentTimeMillis() + seconds * 1000; while(System.currentTimeMillis() < t) ; // Теперь получаем его обратно: ObjectInputStream in = new ObjectInputStream( new FileInputStream("Logon.out")); System.out.println( "Recovering object at " + new Date()); a = (Logon)in.readObject(); System.out.println( "logon a = " + a); } } ///: В этом примере есть одно обычное поле String, а другое имеет модификатор transient, для обеспечения возможности сохранения не transient поля с помощью метода defaultWriteObject( ), а transient поля сохраняются и восстанавливаются явно. Поля инициализируются внутри конструктора, а не в точке определения, чтобы удостоверится, что они не инициализируются каким-либо автоматическим механизмом во время десериализации. Если вы будете использовать стандартный механизм записи не transient частей вашего объекта, вы должны вызвать defaultWriteObject( ), как первое действие writeObject( ) и defaultReadObject( ), как первое действие readObject( ). Это странный вызов методов. Он может показать, например, что вы вызываете defaultWriteObject( ) для ObjectOutputStream и не передаете ему аргументов, но все же как-то происходит включение и узнавание ссылки на ваш объект и способа записи всех не transient частей. Мираж. Для хранения и восстановления transient объектов используется более знакомый код. И еще, подумайте о том, что происходит тут. В main( ) создается объект SerialCtl, а затем он сериализуется в ObjectOutputStream. (Обратите внимание, что в этом случае используется буфер вместо файла — это все тот же ObjectOutputStream.) Сериализация происходит в строке: o.writeObject(sc); Метод writeObject( ) должен проверить sc на предмет существования собственного метода writeObject( ). (Не с помощью проверки интерфейса — здесь нет его — или типа класса, а реальной охотой за методом, используя рефлексию.) Если метод существует, он используется. Аналогичный подход используется для readObject( ). Возможно это чисто практический способ, которым можно решить проблему, но он, несомненно, странен. Работа с версиямиВозможно, что вам захочется изменить версию сериализованного класса (объекты оригинального класса могут храниться, например, в базе данных). Это допустимо, но вы, вероятно, будете делать это только в специальных случаях, так как это требует дополнительного глубокого понимания, которого мы не достигнем здесь. Документация по JDK в формате HTML, доступная на java.sun.com, описывает эту тему достаточно полно. Вы также должны обратить внимание, что в HTML документация JDK многие комментарии начинаются с предупреждения: Внимание: Сериализованные объекты этого класса не будут совместимы с будущими выпусками Swing. Существующая поддержка сериализации подходит для кратковременного хранения или для RMI между приложениями. ... Это происходит потому, что механизм работы с версиями слишком прост для надежной работы во всех ситуациях, особенно с JavaBeans. Он работает корректно для дизайна и это то, о чем говорит это предупреждение. Использование устойчивостиДостаточно привлекательно использовать технологию сериализации для хранения некоторых состояний вашей программы, чтобы в последствии вы могли легко восстановить программу до текущего состояния. Но прежде, чем сделать это, необходимо ответить на некоторые вопросы. Что случится, если вы сериализуете два объекта, оба из которых имеют ссылки на один объект? Когда вы восстановите эти два объекта из их сериализованного состояния, будите ли вы иметь только один экземпляр третьего объекта? Что, если вы сериализуете два объекта в различные файлы, а десериализуете их в различных частях кода? Вот пример, показывающий эту проблему: //: c11:MyWorld.java import java.io.*; import java.util.*; class House implements Serializable {} class Animal implements Serializable { String name; House preferredHouse; Animal(String nm, House h) { name = nm; preferredHouse = h; } public String toString() { return name + "[" + super.toString() + "], " + preferredHouse + "\n"; } } public class MyWorld { public static void main(String[] args) throws IOException, ClassNotFoundException { House house = new House(); ArrayList animals = new ArrayList(); animals.add( new Animal("Bosco the dog", house)); animals.add( new Animal("Ralph the hamster", house)); animals.add( new Animal("Fronk the cat", house)); System.out.println("animals: " + animals); ByteArrayOutputStream buf1 = new ByteArrayOutputStream(); ObjectOutputStream o1 = new ObjectOutputStream(buf1); o1.writeObject(animals); o1.writeObject(animals); // Запись второго класса // Запись в другой поток: ByteArrayOutputStream buf2 = new ByteArrayOutputStream(); ObjectOutputStream o2 = new ObjectOutputStream(buf2); o2.writeObject(animals); // Теперь получаем назад: ObjectInputStream in1 = new ObjectInputStream( new ByteArrayInputStream( buf1.toByteArray())); ObjectInputStream in2 = new ObjectInputStream( new ByteArrayInputStream( buf2.toByteArray())); ArrayList animals1 = (ArrayList)in1.readObject(); ArrayList animals2 = (ArrayList)in1.readObject(); ArrayList animals3 = (ArrayList)in2.readObject(); System.out.println("animals1: " + animals1); System.out.println("animals2: " + animals2); System.out.println("animals3: " + animals3); } } ///: Класс Shape реализует интерфейс Serializable, так что все, что наследуется от Shape, автоматически реализует Serializable. Каждый Shape содержит данные, а каждый наследуемый от Shape класс содержит статическое поле, определяющее цвет всех этих Shape. (Помещение статического поля в базовый класс приведет к тому, что будет существовать только одно поле, так как статическое поле не дублируется для наследуемых классов.) Методы базового класса могут быть перекрыты для установки цвета для различных типов (статические методы не имеют динамических ограничений, так что это обычные методы). Метод randomFactory( ) создает различные объекты Shape при каждом вызове, используя случайные значения для данных Shape. Circle и Square являются прямым расширением Shape; отличия только в том, что Circle инициализирует color в точке определения, а Square инициализирует его в конструкторе. Дискуссию относительно Line пока отложим. В main( ) используется один ArrayList для хранения объектов Class, а другой для хранения образов. Если вы не задействовали аргумент командной строки, создается shapeTypes ArrayList, и добавляются объекты Class, а затем создается ArrayList shapes, и в него добавляются объекты Shape. Далее, все значения static color устанавливаются равными GREEN, и все сериализуется в файл CADState.out. Если вы укажите аргумент командной строки (предположительно CADState.out), этот файл будет открыт и использован для восстановления состояния программы. В обеих ситуациях распечатывается результирующий ArrayList из Shape. Вот результат одного запуска: >java CADState [class Circle color[3] xPos[-51] yPos[-99] dim[38] , class Square color[3] xPos[2] yPos[61] dim[-46] , class Line color[3] xPos[51] yPos[73] dim[64] , class Circle color[3] xPos[-70] yPos[1] dim[16] , class Square color[3] xPos[3] yPos[94] dim[-36] , class Line color[3] xPos[-84] yPos[-21] dim[-35] , class Circle color[3] xPos[-75] yPos[-43] dim[22] , class Square color[3] xPos[81] yPos[30] dim[-45] , class Line color[3] xPos[-29] yPos[92] dim[17] , class Circle color[3] xPos[17] yPos[90] dim[-76] ] >java CADState CADState.out [class Circle color[1] xPos[-51] yPos[-99] dim[38] , class Square color[0] xPos[2] yPos[61] dim[-46] , class Line color[3] xPos[51] yPos[73] dim[64] , class Circle color[1] xPos[-70] yPos[1] dim[16] , class Square color[0] xPos[3] yPos[94] dim[-36] , class Line color[3] xPos[-84] yPos[-21] dim[-35] , class Circle color[1] xPos[-75] yPos[-43] dim[22] , class Square color[0] xPos[81] yPos[30] dim[-45] , class Line color[3] xPos[-29] yPos[92] dim[17] , class Circle color[1] xPos[17] yPos[90] dim[-76] ] Вы можете видеть, что значения xPos, yPos и dim были успешно сохранены и восстановлены, но при восстановлении статической информации произошли какие-то ошибки. Везде на входе имели “3”, но на выходе этого не получили. Circle имеет значение 1 (RED, как это определено), а Square имеет значение 0 (Помните, что он инициализировался в конструкторе). Это похоже на то, что static не сериализовался совсем! Это верно, несмотря на то, что класс Class реализует интерфейс Serializable, он не делает того, что вы от него ожидаете. Так что если вы хотите сериализовать statics, вы должны сделать это сами. Это то, для чего нужны статические методы serializeStaticState( ) и deserializeStaticState( ) в Line. Вы можете видеть, что они явно вызываются как часть процесса сохранения и восстановления. (Обратите внимание, что порядок записи в файл сериализации и чтения из него должен сохранятся). Таким образом, чтобы CADState.java работал корректно, вы должны: Добавить serializeStaticState( ) и deserializeStaticState( ) к образам. Удалить ArrayList shapeTypes и весь код, относящийся к нему. Добавить вызов новых статических методов сериализации и десериализации образов. Другую проблему вы можете получить, думая о безопасности, так как сериализация сохраняет данные с модификатором private. Если вы имеете проблемы безопасности, эти поля должны помечаться, как transient. Затем вы должны разработать безопасный способ для хранения такой информации, чтобы когда вы делали восстановление, вы могли установить эти private переменные. |