|
презентация жесткий диск. 1 Жесткий диск. Жесткий диск
В спецификации ATA фигурируют следующие компоненты: Хост-адаптер - средства сопряжения интерфейса ATA с системной шиной (в простейшем случае - набор буферных схем между шинами ISA и ATA). Хостом будем называть компьютер с хост-адаптером интерфейса ATA. Кабель-шлейф с двумя или тремя 40-контактными IDC-разъемами. В стандартном кабеле одноименные контакты всех разъемов соединяются вместе. Ведущее устройство (Master) - периферийное устройство, в спецификации ATA официально называемое Device-0 (устройство-0). Ведомое устройство (Slave) - периферийное устройство, в спецификации официально называемое Device-1 (устройство-1). Если к шине ATA подключено одно устройство, оно должно быть ведущим. Если подключены два устройства, одно должно быть ведущим, другое - ведомым. Все иные варианты назначения устройств неработоспособны (если "хитрый" хост-адаптер не возьмет на себя некоторые функции ведущего устройства). О своей роли (ведущее или ведомое) устройства обычно "узнают" с помощью предварительно установленных конфигурационных джамперов. В редких случаях, когда применяется "кабельная выборка", о которой будет сказано ниже, роль устройства определяется его положением на специальном кабеле-шлейфе. Оба подключенных устройства воспринимают команды от хост-адаптера одновременно. Однако исполнять команду будет лишь выбранное устройство. Если бит DEV=0, выбрано устройство-0, если бит DEV=1 - устройство-1. Выходные сигналы на шину ATA имеет право выводить только выбранное устройство. Такая система выбора устройства подразумевает, что начав операцию обмена с одним из устройств, хост-адаптер не может переключиться на обслуживание другого устройства той же шины ATA до завершения начатой операции обмена. Параллельно могут работать только устройства IDE, подключаемые к разным шинам (каналам) ATA. Спецификация ATA-4 определяет возможности обхода этого ограничения. Выполняемая операция и направление обмена данными между устройством и хост-адаптером определяется предварительно записанной командой. Непременным компонентом устройства является буферная память. Ее наличие позволяет выполнять обмен данными в темпе, предлагаемом хост-адаптером (конечно, в пределах возможности устройства), без оглядки на внутреннюю скорость передачи данных между носителем и буферной памятью периферийного устройства. - Все информационные сигналы интерфейса передаются через 40-контактный разъем, у которого ключем является отсутствующий на вилке и закрытый на розетке контакт №20. Для соединения устройств спецификация требует использования плоского многожильного кабеля, длина которого не должна превышать 0,46 м (18"), допустимая емкость проводников не более 35 пФ. Специальные терминаторы стандартом не предусматриваются (они имеются в каждом устройстве и хост-адаптере), но если кабель с тремя разъемами (розетками) используют для подключения одного устройства, то и его и хост-адаптер рекомендуется подключать к противоположным концам кабеля. Для устойчивости работы в режиме UltraDMA при высокой скорости обмена рекомендуется применение сборки 40-контактных разъемов и 80-проводных кабелей, обеспечивающих чередование сигнальных цепей и проводов схемной земли.
- Сигнальный разъем IDE/EIDE и разъем питания
- Интерфейсный кабель с кабельной выборкой
- Система команд АТА
- Стандарт ATA задает систему команд, ориентированную, опять-таки, на накопители на магнитных дисках. Для операций, связанных с обменами данных, имеются команды, использующие обмен данных в режиме PIO или по каналу DMA. Режимы PIO и DMA, включая и Ultra DMA, программируются для устройств специальными командами.
- Свое основное назначение устройства ATA реализуют с помощью команд чтения и записи данных, минимальной адресуемой единицей которых является 512-байтный сектор.
- Команды чтения и записи буфера служат для обмена информации в режиме PIO с 512-байтной буферной памятью устройства (но не сектором носителя).
- Команда форматирования трека по входным параметрам специфична для каждого устройства, и ее использование в целевой системе не рекомендуется. Многие устройства ее отвергают как недопустимую.
- По команде поиска устройство устанавливает головки на заданный цилиндр, трек и считывает идентификатор сектора. Команда рекалибровки заставляет устройство найти нулевой цилиндр. Эту команду обычно применяют при обработке ошибок: часто после такого "встряхивания" ошибка не повторяется.
- Для накопителей со сменными носителями в ATA-2 были предназначены команды загрузки и выгрузки, подтверждения смены носителя, блокировки и разблокировки дверец, их реализация специфична для каждой модели устройства. В ATA-4 набор этих команд сокращен, здесь может работать механизм уведомления о смене носителя Removable Media Status Notification.
- Для запоминающих устройств на флэш-памяти в ATA-4 ввели специальную группу команд Команда установки свойств имеет ряд подкоманд, позвроляющих управлять режимом обмена, кэшированием, параметрами режимов энергосбережения и т.п.
- Команда диагностики, в отличие от остальных всегда адресуясь к нулевому устройству, выполняется одновременно обоими. О ее результате устройство-1 сообщает не хост-контроллеру, а устройству-0. При этом состояние обоих устройств определяется по диагностическому коду, который потом считывается из регистра ошибок нулевого устройства.
- Команда загрузки микрокода позволяет модифицировать firmware - встроенное программное обеспечение устройства. В зависимости от кода в регистре свойств загруженный микрокод будет действовать временно, то есть до выключения питания, или постоянно. Эта команда, как и флэш-BIOS, является палкой о двух концах: возможность модификации кода может обернуться выводом из строя устройства загрузкой некорректного микрокода.
- Средства управления энергопотреблением - Power Management не являются обязательными. С точки зрения потребления различают следующие состояния, перечисленные в порядке возрастания потребления: Sleep - "заснувшее" устройство потребляет минимум энергии, "разбудить" его может только сброс. Время "пробуждения" может доходить до 30 с. В состоянии Standby Mode (дежурный режим) устройство способно принимать команду по интерфейсу, но для доступа к носителю может потребоваться такое же большое время. И наконец, в активном режиме Active Mode устройство все запросы обслуживает за кратчайшее время. Устройства могут поддерживать и расширенное управление энергопотреблением APM (Advanced Power Management). При этом задается уровень APM Level, определяющий степень активности: 01h - минимальное потребление, FEh - максимальная производительность. Уровень выше 80h не позволяет устройству останавливать шпиндельный двигатель. APM управляется подкомандами Set Features. Устройства с пакетным интерфейсом для управления энергопотреблением могут использовать и команды пакетного протокола.
- Начиная с ATA-3 в стандарт введена группа команд защиты - Security. Защищенное устройство по включению питания или аппаратному сбросу будет находиться в заблокированном состоянии, при котором любой доступ к информации носителя запрещается. Система защиты поддерживает два пароля - главный (Master Password) и пользовательский (User Password).
- Разблокировать можно только специальной командой, в которой необходимо указать пароль пользователя. Если пароль утерян, то можно использовать главный пароль, но доступ к данным будет получен только если была выбрана высокая степень защиты (High). Если была выбрана максимальная степень защиты, то разблокировать устройство по главному паролю можно только командой защитного стирания всей информация с носителя. Для осложнения подбора пароля (его длина составляет 32 байт) служит счетчик неудачных попыток разблокировки, по срабатывании которого команды разблокировки будут отвергаться до выключения питания или аппаратного сброса.
- Интеллектуальный многофункциональный интерфейс SCSI
- SCSI был разработан еще в конце 70-х годов в качестве устройства сопряжения компьютера и интеллектуального контроллера дискового накопителя. Интерфейс SCSI является универсальным и определяет шину данных между центральным процессором и несколькими внешними устройствами, имеющими свой контроллер. Помимо электрических и физических параметров, определяются также команды, при помощи которых, устройства, подключенные к шине осуществляют связь между собой. Интерфейс SCSI не определяет детально процессы на обеих сторонах шины и является интерфейсом в чистом виде.
- Применяются в основном два стандарта - SCSI-2 и Ultra SCSI. В режиме Fast SCSI-2 скорость передачи данных доходит до 10 мегабайт в секунду при использовании 8-разрядной шины и до 20 мегабайт при 16-разрядной шине Fast Wide SCSI-2. Появившийся позднее стандарт Ultra SCSI отличается еще большей производительностью - 20 мегабайт в секунду для 8-разрядной шины и 40 мегабайт для 16-разрядной. В новейшем SCSI-3 увеличен набор команд, но быстродействие осталось на том же уровне. Все применяющиеся сегодня стандарты совместимы с предыдущими версиями "сверху - вниз", то есть к адаптерам SCSI-2 и Ultra SCSI можно подключить старые SCSI-устройства. Интерфейс SCSI-Wide, SCSI-2, SCSI-3 - стандарты модификации интерфейса SCSI, разработаны комитетом ANSI. Общая концепция усовершенствований направлена на увеличение ширины шины до 32-х, с увеличением длинны соединительного кабеля и максимальной скорости передачи данных с сохранением совместимости с SCSI. Это наиболее гибкий и стандартизованный тип интерфейсов, применяющийся для подключения 7 и более периферийных устройств, снабженных контроллером интерфейса SCSI. Интерфейс SCSI остается достаточно дорогим и самым высокопроизводительным из семейства интерфейсов периферийных устройств персональных компьютеров, а для подключения накопителя с интерфейсом SCSI необходимо дополнительно устанавливать адаптер, т.к. немногие материнские платы имеют интегрированный адаптер SCSI.
- Для подключения внутренних приборов применяются разъемы:
- для подключения 8-битных устройств – IDC-50 (сейчас его, как правило, называют Low Density);
- для подключения 16-битных устройств, в том числе и приборов LVD-68 – контактный разъем High Density
- Low Density предназначен для подключения «узких» – Narrow (8-битных) устройств. High Density предназначен для подключения «широких» – Wide (16 битных) устройств,
- В последнее время очень широкое распространение получили RAID-системы, базирующиеся на SCSI-интерфейсе. Такие системы подразумевают наличие возможности «горячей» замены отказавших дисков. Для этого разработан разъем, через который подключаются как сигнальные цепи, так и цепи питания жесткого диска. Это разъем "High density 80 pin".
- Существует также Ultra2 SCSI (LVD) Low Voltage Differential Parallel SCSI Interface, т.е. низковольтный дифференциальный паралельный SCSI интерфейс. Этот вариант SCSI существенно отличается от всех своих предшественников по двум параметрам:
- Скорость передачи увеличена до 80 MB/s
- Максимальная длина соединительного кабеля может достигать 12 метров
- Кроме этого, к одному шлейфу можно подключить до 15 устройств. Обратная совместимость, как это принято для SCSI устройств, также выдерживается и устройство с Ultra2 SCSI LVD можно подключить к обычному контроллеру SCSI. С этим интерфейсом выпускаются только жесткие диски в вариантах с 68-контактным разъемом и SCA.
- Интерфейс SATA
- SATA (англ. Serial ATA) — последовательный интерфейс обмена данными с накопителями информации (как правило, с жёсткими дисками). SATA является развитием интерфейса ATA (IDE), который после появления SATA был переименован в PATA (Parallel ATA).
- Первоначально стандарт SATA предусматривал работу шины на частоте 1,5 ГГц, обеспечивающей пропускную способность приблизительно в 1,2 Гбит/с (150 МБ/с). (20%-я потеря производительности объясняется использованием системы кодирования 8B/10B, при которой на каждые 8 бит полезной информации приходится 2 служебных бита). Пропускная способность SATA/150 незначительно выше пропускной способности шины Ultra ATA (UDMA/133). Главным преимуществом SATA перед PATA является использование последовательной шины вместо параллельной.
- SATA/300
- Стандарт SATA/300 работает на частоте 3 ГГц, обеспечивает пропускную способность до 2,4 Гбит/с (300 МБ/с). Впервые был реализован в контроллере чипсета nForce 4 фирмы Nvidia. Весьма часто стандарт SATA/300 называют SATA II или SATA 3.0. [1] Теоретически SATA/150 и SATA/300 устройства должны быть совместимы (как SATA/300 контроллер и SATA/150 устройство, так и SATA/150 контроллер и SATA/300 устройство) за счёт поддержки согласования скоростей (в меньшую сторону), однако для некоторых устройств и контроллеров требуется ручное выставление режима работы (например, на НЖМД фирмы Seagate, поддерживающих SATA/300 для принудительного включения режима SATA/150 предусмотрен специальный джампер).
- Стандарт SATA предусматривает возможность увеличения скорости работы до 600Мб/с (6 ГГц).
- SATA использует 7-контактный разъём вместо 40-контактного разъёма у PATA. SATA-кабель имеет меньшую площадь, за счёт чего уменьшается сопротивление воздуху, обдувающему комплектующие компьютера; улучшается охлаждение системы.
- SATA-кабель за счёт своей формы более устойчив к многократному подключению. Питающий шнур SATA так же разработан с учётом многократных подключений. Разъём питания SATA подаёт 3 напряжения питания: +12 В, +5 В и +3,3 В; однако современные устройства могут работать без напряжения +3,3 В, что даёт возможность использовать пассивный переходник с стандартного разъёма питания IDE на SATA. Ряд SATA устройств поставляется с двумя разъёмами питания: SATA и Molex.
- Стандарт SATA отказался от традиционного для PATA подключения по два устройства на шлейф; каждому устройству полагается отдельный кабель, что снижает задержки при одновременной работе двух устройств на одном кабеле, уменьшает возможные проблемы при сборке (проблема конфликта Slave/Master устройств для SATA отсутствует), устраняет возможность ошибок при использовании нетерминированных PATA-шлейфов.
- Стандарт SATA предусматривает горячую замену устройств и функцию очереди команд (NCQ).
- SATA устройства используют два разъёма — один, семи контактный, для подключения шины данных и второй, 15-ти контактный, для подключения питания. Стандарт SATA предусматривает возможность использовать вместо 15-ти контактного разъёма питания стандартный 4-х контактный разъём Molex. Использование одновременно обоих типов силовых разъёмов может привести к повреждению устройства.
- G — заземление (англ. Ground)
- R — зарезервировано
- D1+,D1−,D2+,D2− — два канала передачи данных (от контроллера к устройству и от устройства к контроллеру соответственно). Для передачи сигнала используется технология LVDS, провода каждой пары (D1+, D1− и D2+, D2−) являются экранированными витыми парами.
- eSATA (External SATA) — интерфейс подключения внешних устройств, поддерживающий режим «горячей замены» (англ. Hot-plug). Был создан несколько позже SATA (в середине 2004).
- Основные особенности eSATA:
- Требует для подключения два провода: шину данных и силовой кабель.
- Ограничен по длине кабеля данных (около 2 м).
- Средняя практическая скорость передачи данных выше, чем у USB или IEEE 1394.
- Существенно меньше нагружается центральный процессор.
- Интерфейс SAS (англ. Serial Attached SCSI) обеспечивает подключение по физическому интерфейсу, аналогичному SATA, устройств, управляемых набором команд SCSI. Обладая обратной совместимостью с SATA, он даёт возможность подключать по этому интерфейсу любые устройства, управляемые набором команд SCSI — не только НЖМД, но и сканеры, принтеры и др. По сравнению с SATA, SAS обеспечивает более развитую топологию, позволяя осуществлять параллельное подключение одного устройства по двум или более каналам. Так же поддерживаются расширители шины, позволяющие подключить несколько SAS устройств к одному порту.
- Интерфейс SATA II
- Введен с 2004 г. Увеличилась пропускная способность (со 150 до 300 МBps). Учитывая, что скорость чтения с одиночного диска на данный момент приближается к 70 МBps, пропускной способности первой версии стандарта скорее всего с головой хватит на ближайшие несколько лет.
- Во-вторых, поддержка Native Command Queuing (NCQ), или технологии маршрутизации команд, стала фактически неотъемлемой частью стандарта SATA II, до этого же NCQ являлась необязательным дополнением SATA 1.0. NCQ позволяет переупорядочивать до 32 команд чтения/записи жесткого диска с целью достижения оптимальной производительности и снижения износа его механизмов. Ее работу можно проиллюстрировать следующим примером: предположим, диску поступают подряд несколько команд на чтение секторов с номерами 3000, 2000, 7000, 5000. Диск без NCQ считал бы сектора именно в этом порядке, в то время как диск с NCQ изменит последовательность чтения на 2000, 3000, 5000, 7000, совершив при том меньшее количество перемещений головок. Кроме того, результаты тестов показали, что вследствие такого упорядочивания в части задач (к примеру, дефрагментации) может наблюдаться ощутимый прирост производительности. Для использования данной технологии необходимы три условия: контроллер SATA II или SATA 1.0 с поддержкой NCQ (на плате или отдельный), драйверы для операционной системы с поддержкой команд NCQ и жесткий диск с NCQ. С первым и вторым на данный момент проблем нет – контроллеры SATA II имеются на всех материнских платах с чипсетами i915/925 и выше и nForce4, соответствующие драйверы для них уже есть. Однако в связи с тем, что часть работы с NCQ выполняет драйвер, при включении данной технологии может наблюдаться некоторое повышение загрузки процессора.
- И в-третьих, добавлена функция горячего подключения, ранее являвшаяся опциональной. После установки соответствующих драйверов жесткий диск стандарта SATA II в системе определяется как съемное устройство и может быть в любой момент безопасно отключен. Что еще более удобно – в комплекте с некоторыми материнскими платами поставляется специальная планка на заднюю стенку с двумя SATA-разъемами и разъемом питания, благодаря чему можно подключить SATA II-винчестер, не вскрывая системный блок и не используя дополнительные приспособления вроде USB- или FireWire-карманов.
- В целом, вторая версия SATA является скорее стандартизацией тех возможностей SATA, которые ранее были отданы производителям жестких дисков/контроллеров, а не чем-то радикально новым. Тем не менее на данный момент уже имеет смысл обращать внимание на тип и версию интерфейса винчестера, а при покупке отдавать предпочтение более новой версии, не забывая, конечно, и о цене.
- RAID (англ. redundant array of independent/inexpensive disks) — дисковый массив независимых дисков. Служат для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0)
- RAID 0 («Striping») — дисковый массив с отсутствием избыточности. Информация записывается сквозь все диски последовательно, разбиваясь на блоки данных (Ai).
- За счёт этого существенно повышается производительность, но страдает надёжность всего массива. (При выходе из строя любого из входящих в RAID 0 винчестеров полностью и безвозвратно пропадает вся информация). В соответствии с теорией вероятности, надёжность массива RAID 0 равна произведению надёжностей составляющих его дисков, каждая из которых меньше единицы, т. о. совокупная надёжность заведомо ниже надёжности любого из дисков.
- RAID 0 может быть реализован как программно так и аппаратно
- RAID 1 (Mirroring — «зеркало»). отказоустойчивый массив из пары дисков. При записи данные с первого диска дублируются на втором (так называемое зеркалирование). Это эффективное и сравнительно простое в реализации решение обладает существенным недостатком — объем дискового пространства массива равен емкости наименьшего диска (например, если объединить в RAID1 диски на 30 и 40 Гбайт, то доступно будет только 30 Гбайт). Имеет защиту от выхода из строя половины имеющихся аппаратных средств (в частном случае — одного из двух жёстких дисков), обеспечивает приемлемую скорость записи и выигрыш по скорости чтения за счёт распараллеливания запросов. Зеркало на многих дисках — RAID 1+0. При использовании такого уровня зеркальные пары дисков выстраиваются в «цепочку», поэтому объём полученного тома может превосходить ёмкость одного жёсткого диска. Достоинства и недостатки такие же, как и у уровня RAID 1. Как и в других случаях, рекомендуется включать в массив диски горячего резерва HotSpare из расчёта один резервный на пять рабочих.
- RAID5 использует независимый доступ к дискам, так что запросы к разным дискам могут выполняться параллельно. Избыточность достигается путем размещения блоков четности циклически по всем дискам массива. При сбое какого-либо диска информацию можно восстановить, используя данные на оставшихся дисках. Емкость такого массива равна (N–1)*(емкость наименьшего диска). Минимальное число дисков для реализации массива равно трем. Причем для вычисления четности (а это нужно при каждой операции записи) необходимо вычислить функцию XOR для записываемых битов. Большинство контроллеров используют для этого специализированные процессоры, но некоторые выполняют операцию программно, силами центрального процессора.
- Итак, независимый доступ дает возможность массивам RAID5 достигать высокой производительности в серверных приложениях с высокой частотой транзакций, при этом достаточно экономно расходуя дисковое пространство для обеспечения избыточности. RAID5 — очень распространенное и разумное решение для самых разных серверов.
- RAID10 — массив RAID0, элементами которого являются массивы RAID1. Цель — объединить высокую производительность RAID0 с отказоустойчивостью RAID1. В последнее время часто встречается в недорогих контроллерах.
- RAID 2 зарезервирован для массивов, которые применяют код Хемминга.
- RAID 3, 4, 5, 6 используют чётность для защиты данных от одиночных неисправностей.
- RAID50 объединяет отказоустойчивость и высокую скорость обработки транзакций RAID5 с высокой скоростью потокового чтения/записи RAID0. RAID50 представляет собой RAID0-массив, элементами которого являются массивы RAID5. Это хорошее серверное решение, но для его реализации требуется как минимум шесть дисков.
|
|
|