Главная страница
Навигация по странице:

  • Параметры HDD

  • Число поверхностей (sides number)

  • Число цилиндров (cylinders number)

  • Число секторов (sectors count)

  • Число секторов на дорожке (sectors per track)

  • Частота вращения шпинделя (rotational speed или spindle speed)

  • Время перехода от одной дорожки к другой (track-to-track seek time)

  • Время успокоения головок (head latency time)

  • Время установки или время поиска (seek time)

  • Среднее время установки или поиска (average seek time)

  • Время ожидания (latency)

  • Время доступа (access time)

  • Среднее время доступа к данным (average access time)

  • Скорость передачи данных (data transfer rate)

  • Размер кеш-буфера контроллера (internal cash size)

  • Средняя потребляемая мощность (capacity).

  • Уровень шума (noise level)

  • Сопротивляемость ударам (G-shock rating)

  • Физический и логический объем накопителей.

  • презентация жесткий диск. 1 Жесткий диск. Жесткий диск


    Скачать 2.27 Mb.
    НазваниеЖесткий диск
    Анкорпрезентация жесткий диск
    Дата09.03.2023
    Размер2.27 Mb.
    Формат файлаppt
    Имя файла1 Жесткий диск.ppt
    ТипДокументы
    #975946
    страница2 из 3
    1   2   3
    MBR
    • Давайте посмотрим как устроен дескриптор раздела:.
    • * 0001h-0003h начало раздела
    • ** 0005h-0007h конец раздела
    • С точки зрения разделов диска наиболее популярной до недавнего времени была и остается MS-DOS. Она забирает в свое пользование два из четырех разделов: Primary DOS partition, Extended DOS partition. Первый из них, (primary) это обычный досовый диск C:. Второй - это контейнер логических дисков. Они все находятся там в виде цепочки подразделов, которые так и именуются: D:, E:, ... Логические диски могут иметь и инородные файловые системы, отличные от файловой системы DOS. Однако, как правило, инородность файловой системы связана присутствием еще одной операционной системы, которую, вообще говоря, следовало бы поместить в свой собственный раздел (не extended DOS), но для таких целей часто оказывается слишком маленькой таблица разделов.
    • Отметим еще одно важное обстоятельство. Когда на чистый жесткий диск устанавливается DOS, то при загрузке нет никаких альтернатив в выборе операционных систем. Поэтому загрузчик выглядит весьма примитивно, ему не надо спрашивать у пользователя, какую систему тот хочет загрузить. С желанием иметь сразу несколько систем возникает необходимость заводить программу, позволяющую выбирать систему для загрузки.
    • параметр довольно свободный от каких-либо стандартов, ограничиваемый лишь форм-факторами корпусов системных блоков. Наиболее распространены накопители с диаметром дисков 2.2, 2.3, 3.14 и 5.25 дюймов. Диаметр дисков определяет плотность записи на дюйм магнитного покрытия. Накопители большего диаметра содержат большее число дорожек, и в них, как правило используются более простые технологии изготовления носителей, предназначенных для меньшей плотности записи. Они, как правило, медленнее своих меньших собратьев и имеют меньшее число дисков, но более надежны. Накопители с меньшим диаметром больших объемов имеют более высокотехнологичные поверхности и высокие плотности записи информации, а также, как правило, и большее число дисков.
    • Параметры HDD
    • Диаметр дисков (disk diameter)
    • определяет количество физических дисков нанизанных на шпиндель. Выпускаются накопители с числом поверхностей от 1 до 8 и более. Однако, наиболее распространены устройства с числом поверхностей от 2 до 5. Принципиально, число поверхностей прямо определяет физический объем накопителя и скорость обработки операций на одном цилиндре.
    • Число поверхностей (sides number)
    • определяет сколько дорожек (треков) будет располагаться на одной поверхности. В настоящее время все накопители емкостью более 1 Гигабайта имеют число цилиндров более 1024, вследствие чего, для распространенных ОС применяются унифицированные режимы доступа с пересчетом и эмуляцией и виртуализацией числа головок, цилиндров и секторов (LBA и Large).
    • Число цилиндров (cylinders number)
    • бщее число секторов на всех дорожках всех поверхностей накопителя. Определяет физический неформатированный объем устройства.
    • Число секторов (sectors count)
    • общее число секторов на одной дорожке. Часто, для современных накопителей показатель условный, т.к. они имеют неравное число секторов на внешних и внутренних дорожках, скрытое от системы и пользователя интерфейсом устройства.
    • Число секторов на дорожке (sectors per track)
    • определяет, сколько времени будет затрачено на последовательное считывание одной дорожки или цилиндра. Частота вращения измеряется в оборотах в минуту (rpm). Для дисков емкостью до 1 гигабайта она обычно равна 5,400 оборотов в минуту, а у более вместительных достигает 7,200, 10000 rpm и более.
    • Частота вращения шпинделя (rotational speed или spindle speed)
    • обычно составляет от 3.5 до 5 миллисекунд, а у самых быстрых моделей может быть от 0.6 до 1 миллисекунды. Этот показатель является одним из определяющих быстродействие накопителя, т.к. именно переход с дорожки на дорожку является самым длительным процессом в серии процессов произвольного чтения/записи на дисковом устройстве. Показатель используется для условной оценки производительности при сравнении накопителей разных моделей и производителей.
    • Время перехода от одной дорожки к другой (track-to-track seek time)
    • время, проходящее с момента окончания позиционирования головок на требуемую дорожку до момента начала операции чтения/записи. Является внутренним техническим показателем, входящим в показатель - время перехода с дорожки на дорожку.
    • Время успокоения головок (head latency time)
    • время, затрачиваемое устройством на перемещение головок чтения/записи к нужному цилиндру из произвольного положения.
    • Время установки или время поиска (seek time)
    • усредненный результат большого числа операций позиционирования на разные цилиндры, часто называют средним временем позиционирования. Среднее время поиска имеет тенденцию уменьшаться с увеличением емкости накопителя, т.к повышается плотность записи и увеличивается число поверхностей. Среднее время поиска является одним из важнейших показателей оценки производительности накопителей, используемых при их сравнении.
    • Среднее время установки или поиска (average seek time)
    • время, необходимое для прохода нужного сектора к головке, усредненный показатель – среднее время ожидания (average latency), получаемое как среднее от многочисленных тестовых проходов. После успокоения головок на требуемом цилиндре контроллер ищет нужный сектор. При этом, последовательно считываются адресные идентификаторы каждого проходящего под головкой сектора на дорожке. В идеальном, с точки зрения производительности случае, под головкой сразу окажется нужный сектор, в плохом - окажется, что этот сектор только что "прошел" под головкой, и, до окончания процесса успокоения необходимо будет ждать полный оборот диска для завершения операции чтения/записи.
    • Время ожидания (latency)
    • суммарное время, затрачиваемое на установку головок и ожидание сектора. Причем, наиболее долгим является промежуток времени установки головок..
    • Время доступа (access time)
    • время, проходящее с момента получения запроса на операцию чтения/записи от контроллера до физического осуществления операции - результат сложения среднего время поиска и среднего времени ожидания. Среднее время доступа зависит от того, как организовано хранение данных и насколько быстро позиционируются головки чтения записи на требуемую дорожку. Среднее время доступа – усредненный показатель от многочисленных тестовых проходов, и обычно, оно составляет от 10 до 18 миллисекунд
    • Среднее время доступа к данным (average access time)
    • определяет скорость, с которой данные считываются или записываются на диск после того, как головки займут необходимое положение. Измеряется в мегабайтах в секунду (MBps) или мегабитах в секунду (Mbps) и является характеристикой контроллера и интерфейса. Различают две разновидности скорости передачи - внешняя и внутренняя. Скорость передачи данных, также является одним из основных показателей производительности накопителя и используется для ее оценки и сравнения накопителей различных моделей и производителей.
    • Скорость передачи данных (data transfer rate)
    • Встроенный в накопитель буфер выполняет функцию упреждающего кэширования и призван сгладить громадную разницу в быстродействии между дисковой и оперативной памятью компьютера. Выпускаются накопители с 128, 256 и 512 килобайтным буфером. Чем больше объем буфера, тем потенциально выше производительность при произвольном "длинном" чтении/записи.
    • Размер кеш-буфера контроллера (internal cash size)
    • При сборке мощных настольных компьютеров учитывается мощность, потребляемая всеми его устройствами. Современные накопители на ЖД потребляют от 5 до 15 Ватт, что является достаточно приемлемым, хотя, при всех остальных равных условиях, накопители с меньшей потребляемой мощностью выглядат более привлекательно
    • Средняя потребляемая мощность (capacity).
    • разумеется, является эргономическим показателем. Однако, он также, является и некоторым показателем сбалансированности механической конструкции, т.к. шум в виде треска - есть не что иное как звук ударов позиционера шагового или линейного механизма, а, даже микро- удары и вибрация так не желательны для накопителей и приводят к более быстрому их износу.
    • Уровень шума (noise level)
    • определяет сколько времени способен проработать накопитель без сбоев
    • Среднее время наработки на отказ (MTBF)
    • определяет степень сопротивляемости накопителя ударам и резким изменениям давления, измеряется в единицах допустимой перегрузки g во включенном и выключенном состоянии. Является важным показателем для настольных и мобильных систем.
    • Сопротивляемость ударам (G-shock rating)
    • Носители жестких дисков, в отличие от гибких, имеют постоянное число дорожек и секторов, изменить которое невозможно. Эти числа определяются типом модели и производителем устройства. Поэтому, физический объем жестких дисков определен изначально и состоит из объема, занятого служебной информацией (разметка диска на дорожки и сектора) и объема, доступного пользовательским данным. Физический объем жесткого диска, также, зависит от типа интерфейса, метода кодирования данных, используемого физического формата и др. Производители накопителей указывают объемы дисков в миллионах байт, предполагая исходя из десятичной системы исчисления, что в одном мегабайте 1000000 байт. Однако, ПО оперирует не десятичной, а двоичной системами, полагая, что в одном килобайте не 1000 байт, а 1024. Такие несложные разногласия в системах исчисления приводят к несоответствиям при оценке объема накопителей, данном в описании и - выдаваемом различными программными тестами.
    • Одним из возможных, но не желательных способов повышения физической емкости, для производителей, является увеличение емкости сектора. В настоящее время, стандартной емкостью сектора для IBM-совместимых компьютеров является 512 байт. Многие адаптеры позволяют, в процессе физического форматирования, программным путем, изменять емкость сектора, например, до 1024 байт. При этом, соотношение пользовательских данных и служебной информации для сектора улучшается, но снижается надежность хранения данных, т.к. тот же полином ECC будет использоваться для коррекции большего объема данных. Однако, выигрыш на физическом уровне еще не означает тот же результат на логическом, т.к. логическая структура диска может оказаться не эффективной, например, при использовании для работы с файлами малой длинны (менее 1 К). Логический же объем зависит от того, как операционная система или программа записывает информацию в сектора. В случае использования программ и операционных систем с программной компрессией данных, можно повысить объем носителя на величину, зависящую от степени сжатия данных.
    • Для оптимального использования поверхности дисков применяется так называемая зонная запись (Zoned Bit Recording - ZBR), принцип которой состоит в том, что на внешних дорожках, имеющих большую длину (а следовательно - и потенциальную информационную емкость на единицу площади), информация записывается с большей плотностью, чем на внутренних. Таких зон с постоянной плотностью записи в пределах всей поверхности образуется до десятка и более; соответственно, скорость чтения и записи на внешних зонах выше, чем на внутренних.
    • Физический и логический объем накопителей.
    • Схема строения жесткого диска
    • Зонная запись (ZBR)
    • Если вообразить себе поверхность пластины, учитывая то, что каждая дорожка разбита на одинаковое число секторов и то, что длина сектора растет с ростом радиуса дорожки, нетрудно заметить, что внешние сектора длиннее внутренних.Это означает, что внешние дорожки сильно недоиспользованы, потому как в теории они могут содержать значительно больше секторов с той же линейной плотностью записи. В целях увеличения емкости и уменьшения неиспользуемого пространства на современных моделях жестких дисков применяется технология зонной записи (ZBR). По этой технологии дорожки группируются в зоны в зависимости от их расстояния от центра диска. В каждой зоне свое количество секторов на дорожку. Если двигаться от внутренней части диска к его внешнему краю, то каждая следующая зона содержит больше секторов на дорожку, чем предыдущая. Это позволяет более эффективно использовать внешние дорожки диска. В настоящее время в дисках применяется много сложных внутренних структур, так что не существует простого пути выяснения реальной геометрии диска. На самом деле, число секторов на дорожках варьируется, благодаря зоной записи, так что не существует какого либо определенного числа секторов на дорожку.
    • Не менее 16% суммарной рабочей поверхности дисков отводится под служебную информацию, которая обеспечивает нормальную работу винчестера. В первую очередь это инженерная зона (секторы конфигурации, таблицы дефектов, рабочие программы винчестера).
    • Оставшееся дисковое пространство делится на зоны (для большинства винчестеров – от 8 до 20) с различным числом секторов в каждой зоне. Не все секторы используются в качестве рабочих. Часть секторов являются запасными. При первоначальной разметке дисков на заводе-изготовителе производится проверка поверхности диска и информация об обнаруженных дефектных участках записывается в таблицу дефектов, которая размещается в инженерной зоне.
    • В процессе функционирования винчестера эта таблица используется для переназначения (переадресации) обращения к дефектным участкам (секторам) на обращение к хорошим секторам, которые как раз и размещаются на запасных дорожках. Ввиду важности служебной информации инженерная зона различных моделей накопителей может содержать от 2 до 6 копий, а сервометки прописываются с запасом по количеству и более сильным магнитным полем.
    • На любом жестком диске есть заводской дефект-лист. В процессе производства жесткий диск проходит специальный цикл технологических тестов, суммарное время прохождения которых варьируется, в зависимости от модели и емкости диска и составляет от 2-х до 24-х часов. Цель некоторых тестов - выявить потенциальные ошибки поверхности, т.е., спрогнозировать нестабильные сектора и занести их в заводскую таблицу дефектов, чтобы не допустить попадания на такие сектора данных пользователя. Обычными тестами чтения записи такие сектора выявить невозможно, поэтому применяются методы повышения вероятности ошибки. Для этого накопитель искусственно ухудшает характеристики электронной схемы канала чтения-записи, причем используются всевозможные вариации, благо, что современные микросхемы позволяют программировать практически все свои параметры (подробнее об этом - здесь). Таким образом, диск, сходящий с конвейера, имеет некоторое количество записей в его заводской таблице дефектов, и это совершенно нормальное явление. Естественно, эти дефекты незаметны для пользователя, и, к тому же, имеют "мягкую" природу.
    • Интерфейсом накопителей называется набор электроники, обеспечивающий обмен информацией между контроллером устройства (кеш-буфером) и компьютером. В настоящее время в настольных ПК IBM-PC, чаще других, используются три разновидности интерфейсов:
    • Integrated Drive Electronics - IDE, Enhanced Integrated Drive Electronics - EIDE
    • SCSI (Small Computers System Interface)
    • SATA (Serial ATA)
    • Интерфейс IDE
    • Для подключения устройств IDE существует несколько разновидностей интерфейса:
    • ATA (AT Attachment), он же AT-BUS - 16-битный интерфейс подключения к шине компьютера AT. В настоящее время это наиболее распространенный 40-проводной сигнальный и 4-проводной питающий интерфейс для подключения дисковых накопителей к компьютерам класса AT. Для миниатюрных (2,5" и меньших) накопителей используют 44-проводной кабель, по которому передается и питание.
    • PC Card ATA - 16-битный интерфейс с 68-контактным разъемом PC Card (PCMCIA) для подключения к блокнотным ПК.
    • XT IDE (8-бит), он же XT-BUS - 40-проводной интерфейс, похожий на ATA, но несовместимый с ним.
    • MCA IDE (16-бит) - 72-проводный интерфейс, предназначенный специально для шины и накопителей PS/2. Как и компьютеры PS/2, по крайней мере в нашей стране устройства с этим интерфейсом встречаются редко.
    • ATA-2 - расширенная спецификация ATA, включает 2 канала, 4 устройства, PIO Mode 3, multiword DMA mode 1, Block mode, объем диска до 8 Гбайт, поддержка LBA и CHS.
    • Fast ATA-2 разрешает использовать Multiword DMA Mode 2 (13,3 Mбайт/с), PIO Mode 4.
    • ATA-3 - расширение ATA-2. Включает средства парольной защиты, улучшенного управления питанием, самотестирования с предупреждением приближения отказа - SMART (Self Monitoring Analysis and Report Technology).
    • ATA/ATAPI-ATAPI-4 - расширение ATA-3, включающее режим Ultra DMA со скоростью обмена до 33 Мбайт/с и пакетный интерфейс ATAPI.
    • E-IDE (Enhanced IDE) - расширенный интерфейс, введенный фирмой Western Digital. Реализуется в адаптерах для шин PCI и VLB, позволяющий подключать до 4 устройств (к двум каналам), включая CD-ROM и стриммеры (ATAPI). Поддерживает PIO Mode 3, multiword DMA mode 1, объем диска до 8 Гбайт, LBA и CHS. С аппаратной точки зрения практически полностью соответствует спецификации ATA-2.
    • Интерфейсы HDD
    • Устройства ATA IDE, E-IDE, ATA-2, Fast ATA-2, ATA-3 и ATA/ATAPI-4 электрически совместимы, степень логической совместимости достаточно высока (все базовые возможности ATA доступны). Однако для полного использования возможностей всех расширений необходимо соответствие спецификаций устройств, хост-адаптера и его программного обеспечения. В настоящее время наиболее широко распространен и четко стандартизован интерфейс, официально называемый ATA-2.
    • Интерфейс IDE разрабатывался как недорогая и производительная альтернатива высокоскоростным интерфейсам ESDI и SCSI. Интерфейс, предназначен для подключения двух дисковых устройств. Отличительной особенностью дисковых устройств, работающих с интерфейсом IDE состоит в том, что собственно контроллер дискового накопителя располагается на плате самого накопителя вместе со встроенным внутренним кэш-буфером. Такая конструкция существенно упрощает устройство самой интерфейсной карты и дает возможность размещать ее не только на отдельной плате адаптера, вставляемой в разъем системной шины, но и интегрировать непосредственно на материнской плате компьютера. Интерфейс характеризуется чрезвычайной простотой, высоким быстродействием, малыми размерами и относительной дешевизной.
    • На смену интерфейсу IDE пришло детище фирмы Western Digital - Enhanced IDE, или сокращенно EIDE. Долгое время это был лучший вариант для подавляющего большинства настольных систем. Жесткие диски EIDE заметно дешевле аналогичных по емкости SCSI-дисков и в однопользовательских системах не уступают им по производительности, а большинство материнских плат имеют интегрированный двухканальный контроллер для подключения четырех устройств. Что же появилось нового в Enhanced IDE по сравнению с IDE ?
    • Во-первых, это большая емкость дисков. Если IDE не поддерживал диски свыше 528 мегабайт, то EIDE поддерживает объемы до 8.4 гигабайта на каждый канал контроллера.
    • Во-вторых, к нему подключается больше устройств - четыре вместо двух. Раньше имелся только один канал контроллера, к которому можно было подключить два IDE устройства. Теперь таких каналов два. Основной канал, который обычно стоит на высокоскоростной локальной шине и вспомогательный.
    • В-третьих, появилась спецификация ATAPI (AT Attachment Packet Interface) дающая возможность подключения к этому интерфейсу не только жестких дисков, но и других устройств - стриммеров и дисководов CD-ROM.
    • В-четвертых - повысилась производительность. Накопители с интерфейсом IDE характеризовались максимальной скоростью передачи данных на уровне 3 мегабайт в секунду. Жесткие диски EIDE поддерживают несколько новых режимов обмена данными. В их число входит режим программируемого ввода-вывода PIO (Programmed Input/Output) Mode 3 и 4, которые обеспечивают скорость передачи данных 11.1 и 16.6 мегабайт в секунду соответственно. Программируемый ввод-вывод - это способ передачи данных между контроллером периферийного устройства и оперативной памятью компьютера посредством команд пересылки данных и портов ввода/вывода центрального процессора.
    • В пятых - поддерживается режим прямого доступа к памяти - Multiword Mode 1 DMA (Direct Memory Access) или Multiword Mode 2 DMA и Ultra DMA, которые поддерживают обмен данными в монопольном режиме (то есть когда канал ввода-вывода в течение некоторого времени обслуживает только одно устройство). Периферийные устройства обслуживает специальный контроллер DMA. Скорость при этом достигает 13.3 и 16.6 мегабайта в секунду, а при использовании Ultra DMA и соответствующего драйвера шины - 33 мегабайт в секунду. EIDE-контроллеры используют механизм PIO точно так же, как это делают и некоторые SCSI-адаптеры, но скоростные адаптеры SCSI работают только по методу DMA.
    • В шестых - расширена система команд управления устройством, передачи данных и диагностики, увеличен кеш-буфер обмена данными и существенно доработана механика.
    • Фирмы Seagate и Quantum вместо спецификации EIDE используют спецификацию Fast ATA для накопителей, поддерживающих режимы PIO Mode 3 и DMA Mode 1, а работающие в режимах PIO Mode 4 и DMA Mode 2 обозначают как Fast ATA-2.
    • 1   2   3


    написать администратору сайта