Главная страница
Навигация по странице:

  • Эмоциональные состояния.

  • Половые различия.

  • Дополнение А.3. Расщепленный мозг

  • Структура и функции нейрона

  • Закон «всё или ничего».

  • Нейромедиаторы.

  • Функции главных нейромедиаторов.

  • Нейромедиаторы и действие психотропных веществ.

  • Дополнение А.4. Нервная активность и сканер

  • Годфруа Жо. Что такое психология - royallib. Годфруа Жо. Что такое психология - royallib.com. Жо Годфруа Что такое психология


    Скачать 1.93 Mb.
    НазваниеЖо Годфруа Что такое психология
    АнкорГодфруа Жо. Что такое психология - royallib.com
    Дата15.03.2021
    Размер1.93 Mb.
    Формат файлаdoc
    Имя файлаГодфруа Жо. Что такое психология - royallib.com.doc
    ТипЗакон
    #184821
    страница58 из 67
    1   ...   54   55   56   57   58   59   60   61   ...   67

    Предпочтительное пользование той или другой рукой. Правши составляют около 90 % всех людей; по-видимому, доминирование правой руки существовало уже у пещерных предков человека 190. Не следует, однако, думать, что такая ситуация обязательно обусловлена наследственными факторами. Статистически установлено, что ребенок, у которого оба родителя левши, имеет примерно один шанс из двух стать правшой.
    Речь. У подавляющего большинства людей центры речи расположены в левом полушарии. Только 5 % правшей и 30 % левшей, т. е. менее 8 % всех людей, разговаривают с помощью правого полушария. Согласно Рош-Лекуру (цит. по Changeux, 1983), все дети появляются на свет с речевыми зонами в обоих полушариях, однако в процессе развития на первом году жизни одно из них «берет верх» над другим. Поэтому отсутствие или случайная утрата одного полушария при рождении или в первые два года жизни может быть компенсирована, так как соответствующие функции способно взять на себя второе полушарие.

    То, что некоторые функции представлены только в одном полушарии, может означать, что это полушарие (обычно левое) подавляет активность другого. Иными словами, вследствие блокады недоминантного полушария доминантным через межполушарные волокна мозолистого тела недоминантное полушарие остается пассивным.

    В дополнении А.3 приводятся наблюдения ученых за работой обоих мозговых полушарий, ставших независимыми после перерезки мозолистого тела. Эти наблюдения позволили выявить важную роль мозолистого тела в межполушарных взаимодействиях и в особенности роль доминантного полушария в объединении информации. Благодаря такой организации большого мозга вся нервная система в целом получает возможность работать согласованно и эффективно. Так, например, нервные сигналы, вызванные раздражением левой руки и приходящие в правое полушарие, автоматически передаются в доминантное левое полушарие. Лишь после того как левое полушарие ознакомилось с этой информацией, в первое полушарие посылается команда, заставляющая левую руку выполнить нужное движение.

    Эмоциональные состояния. По-видимому, каждое полушарие мозга, помимо прочего, отвечает за направленность чувств человека и их позитивную или негативную окраску. Так, например, если патологический очаг у больного эпилепсией находится в левом полушарии мозга, человека нередко охватывает беспредметный смех, а если в правом, то больной более склонен к грусти и слезам.

    Было также показано, что у людей во время депрессии в области правого полушария нередко регистрируются аномальные электрические волны. Это привело к предположению, что правое полушарие ответственно за эмоциональные состояния с негативной окраской и способствует тому, что человек видит прежде всего отрицательные стороны событий, тогда как левое полушарие придает эмоциональным реакциям на те или иные события положительную окраску. Таким образом, чувство или эмоциональное состояние человека будет определяться балансом этих противоположных тенденций. Однако, как подчеркивает Шанжё, вопрос о том, как мозгу удается без острого конфликта сделать взвешенный выбор, до сих пор остается полной загадкой.

    Половые различия. Были обнаружены некоторые различия в строении мозга у мужчин и женщин. Например, недавно выяснилось, что у женщин в определенном участке мозолистого тела больше нервных волокон, чем у мужчин. Это может означать, что межполушарные связи у женщин более многочисленны и поэтому у них лучше происходит объединение информации, имеющейся в обоих полушариях; этим можно объяснить и некоторые половые различия в поведении. Кроме того, выявленные у женщин более высокие показатели, связанные с лингвистическими функциями, памятью, аналитическими способностями и тонким ручным манипулированием можно связать с большей относительной активностью у них левого полушария мозга. Напротив, функции восприятия и способность к оценке пространственных отношений и художественному творчеству, видимо, лучше развиты у мужчин, что может объясняться бо льшим участием в этих процессах правого полушария.

    Еще раз, однако, отметим, что в первые годы жизни оба полушария способны хранить одинаковые количества и одинаковые виды информации и что специализация полушарий происходит лишь очень постепенно. В связи с этим можно задаться вопросом: какова роль культуры и воспитания в формировании различий между женщинами и мужчинами, в частности различий в развитии нервных функций, обусловливающих те или иные способности?
    Дополнение А.3. Расщепленный мозг
    Сперри (Sperry, 1968) решил выяснить, что произойдет с нервной регуляцией функций организма и особенно с процессами восприятия информации, если полностью перерезать мозолистое тело, разобщив тем самым мозговые полушария 191. Хотя такая операция обычно не вызывает сколько-нибудь серьезных нарушений повседневного поведения больных, было тем не менее замечено, что они действуют в сущности так, как если бы у них было два мозга.
    Напомним, что информация из правой половины поля зрения проецируется в левое полушарие, и наоборот. У большинства людей «разговаривает» левое полушарие, которое интерпретирует события, происходящие в правой половине зрительного поля, и посылает команды мышцам правой половины тела. Правое — «немое» — полушарие расшифровывает информацию из левой половины поля зрения и управляет движениями правой стороны тела.

    Сперри наблюдал людей с «расщепленным» мозгом в различных экспериментальных ситуациях. В одной из них испытуемый находился перед экраном, на который проецировались изображения разных предметов, попавшие в левую или правую половину поля зрения. Одновременно испытуемый руками, скрытыми от его взора, трогал предметы, изображения которых могли проецироваться на правую или левую половину экрана (рис. А.27).


    Рис. А.27. Расщепленный мозг. Испытуемому с перерезанным мозолистым телом предъявляют в левой части экрана изображение карандаша, воспринимаемое правым полушарием, а в правой части экрана — изображение вилки, воспринимаемое левым полушарием. Когда испытуемого просят взять левой рукой (управляемой правым полушарием) увиденный им предмет, он выбирает карандаш. Однако если его спросить, какой предмет он выбрал, он отвечает, что выбрал вилку (как подсказывает ему левое полушарие, ответственное за речь и игнорирующее все зрительные восприятия и инструкции другого полушария).
    Исследователи обнаружили, что испытуемый мог после ощупывания предметов взять левой рукой тот из них, изображение которого на короткое время появилось в левой части экрана. Но он не мог ни назвать этот предмет, ни описать словами действия своей левой руки. Когда изображение предмета проецировалось в правой части экрана, наблюдались противоположные отношения.

    Тогда Сперри и его сотрудники решили выяснить, что произойдет, если изображения разных предметов предъявить на обеих половинах экрана одновременно — например, на левую его часть проецировать изображение карандаша, а на правую — изображение вилки. Когда испытуемого попросили левой рукой, скрытой от его взора, выбрать тот предмет, изображение которого появилось на экране, он выбрал карандаш. Но когда ему предложили назвать выбранный им предмет, он, немного поколебавшись, ответил, что эта вилка.

    Таким образом, «говорящее» полушарие испытуемого отвечало, руководствуясь тем, что оно перед собою «видело», полностью игнорируя команды, посылаемые другим полушарием левой руке.

    Такого рода наблюдения позволили продемонстрировать ту важную роль, которую в согласованном функционировании всего организма играют мозолистое тело и в особенности доминантное полушарие мозга; последнее непрерывно интегрирует нервные сигналы, обеспечивающие совершенную координацию и высокую эффективность работы отдельных частей тела.

    (Источники: Sperry R. W., "The great cerebral commissure", Scientific American, jan. 1964.

    Sperry R. W., "Hemisphere deconnection and unity in conscious awareness", American Psychologist, 1968, n° 23, p. 723–733.)
    Структура и функции нейрона
    Структурной единицей нервной системы является нервная клетка, или нейрон . Нейроны отличаются от других клеток организма многими особенностями. Прежде всего их популяция, насчитывающая от 10 до 30 млрд. (а быть может, и больше 192) клеток, почти полностью «укомплектована» уже к моменту рождения, и ни один из нейронов, если он отомрет, не замещается новым. Принято считать, что после того, как человек минует период зрелости, у него ежедневно отмирает около 10 тысяч нейронов, а после 40 лет этот суточный показатель удваивается.
    Другая особенность нейронов состоит в том, что в отличие от клеток других типов они ничего не продуцируют, не секретируют и не структурируют; единственная их функция заключается в проведении нервной информации.
    Структура нейрона
    Существует много типов нейронов, структура которых варьирует в зависимости от выполняемых ими в нервной системе функций; сенсорный нейрон отличается по своему строению от моторного нейрона или нейрона мозговой коры (рис. А.28).


    Рис. А.28. Различные типы нейронов.
    Но какой бы ни была функция нейрона, все нейроны состоят из трех основных частей: те ла клетки, дендритов и аксона.

    Тело нейрона , как и всякой другой клетки, состоит из цитоплазмы и ядра. Цитоплазма нейрона, однако, особенно богата митохондриями , ответственными за выработку энергии, необходимой для поддержания высокой активности клетки. Как уже отмечалось, скопления тел нейронов образуют нервные центры в виде ганглия, в котором число клеточных тел исчисляется тысячами, ядра , где их еще больше, или, наконец, коры, состоящей из миллиардов нейронов. Тела нейронов образуют так называемое серое вещество .

    Дендриты служат нейрону своего рода антеннами. Некоторые нейроны имеют много сотен дендритов, принимающих информацию от рецепторов или других нейронов и проводящих ее к телу клетки и ее единственному отростку другого типа — аксону .

    Аксон представляет собой часть нейрона, ответственную за передачу информации дендритам других нейронов, мышцам или железам. У одних нейронов длина аксона достигает метра, у других аксон очень короткий. Как правило, аксон ветвится, образуя так называемое терминальное дерево ; на конце каждой ветви имеется синаптическая бляшка . Именно она и образует соединение (синапс ) данного нейрона с дендритами или телами других нейронов.

    Большинство нервных волокон (аксонов) покрыто оболочкой, состоящей из миелина — белого жироподобного вещества, выполняющего функции изоляционного материала. Миелиновая оболочка с регулярными промежутками в 1–2 мм прерывается перетяжками — перехватами Ранвье , которые увеличивают скорость пробегания нервного импульса по волокну, позволяя ему «перепрыгивать» с одного перехвата на другой, вместо того чтобы постепенно распространяться вдоль волокна. Сотни и тысячи собранных в пучки аксонов образуют нервные пути, которые благодаря миелину имеют вид белого вещества .
    Нервный импульс
    Информация поступает в нервные центры, перерабатывается там и затем передается эффекторам в виде нервных импульсов , пробегающих по нейронам и соединяющим их нервным путям.

    Независимо от того, какую информацию передают нервные импульсы, пробегающие по миллиардам нервных волокон, они ничем не отличаются друг от друга. Почему же в таком случае импульсы, идущие от уха, передают информацию о звуках, а импульсы от глаза — о форме или цвете предмета, а не о звуках или о чем-нибудь совсем ином? Да просто потому, что качественные различия между нервными сигналами определяются не самими этими сигналами, а тем местом, куда они приходят: если это мышца, она будет сокращаться или растягиваться; если это железа, она будет выделять секрет, уменьшать или прекращать секрецию; если это определенная область мозга, в ней будет формироваться зрительный образ внешнего стимула или же сигнал подвергнется расшифровке в виде, например, звуков. Теоретически достаточно было бы изменить ход нервных путей, например, часть зрительного нерва в зону мозга, ответственную за расшифровку звуковых сигналов, чтобы заставить организм «слышать глазами».
    Потенциал покоя и потенциал действия
    Нервные импульсы передают по дендритам и аксонам не сам внешний стимул как таковой и даже не его энергию. Внешний стимул лишь активирует соответствующие рецепторы, и эта активация преобразуется в энергию электрического потенциала , который создается на кончиках дендритов, образующих контакты с рецептором.

    Возникающий при этом нервный импульс можно грубо сравнить с огнем, бегущим вдоль бикфордова шнура и поджигающим расположенный у него на пути патрон с динамитом; «огонь», таким образом, распространяется по направлению к конечной цели за счет небольших следующих друг за другом взрывов. Передача нервного импульса, однако, принципиально отличается от этого тем, что почти сразу же после прохождения разряда потенциал нервного волокна восстанавливается.

    Нервное волокно в состоянии покоя можно уподобить маленькой батарейке; с наружной стороны его мембраны имеется положительный заряд, а с внутренней — отрицательный (рис. А.29), и этот потенциал покоя преобразуется в электрический ток только при замыкании обоих полюсов. Именно это и происходит при прохождении нервного импульса, когда мембрана волокна на какое-то мгновение становится проницаемой и деполяризуется. Вслед за этой деполяризацией наступает период рефрактерности , в течение которого мембрана реполяризуется и восстанавливает способность к проведению нового импульса 193. Так за счет последовательных деполяризаций и происходит распространение этого потенциала действия (т. е. нервного импульса) с постоянной скоростью, варьирующей в пределах от 0,5 до 120 метров в секунду в зависимости от типа волокна, его толщины и наличия или отсутствия у него миелиновой оболочки.

    Рис. А.29. Потенциал действия. Развитие потенциала действия, сопровождающееся изменением электрического напряжения (от -70 до +40 мВ), обусловлено восстановлением равновесия между положительными и отрицательными ионами по обе стороны мембраны, проницаемость которой на короткое время увеличивается.
    Закон «всё или ничего». Поскольку каждому нервному волокну присущ определенный электрический потенциал, распространяющиеся по нему импульсы независимо от интенсивности или каких-либо других свойств внешнего стимула всегда имеют одни и те же характеристики. Это означает, что импульс в нейроне может возникнуть только в том случае, если его активация, вызванная стимуляцией рецептора или импульсом от другого нейрона, будет превосходить некий порог, ниже которого активация неэффективна; но, если порог достигнут, сразу же возникает «полномерный» импульс. Этот факт получил название закона «всё или ничего».
    Синаптическая передача
    Синапс. Синапсом называют область соединения между окончанием аксона одного нейрона и дендритами или телом другого. Каждый нейрон может образовать до 800-1000 синапсов с другими нервными клетками, а плотность этих контактов в сером веществе мозга составляет боле 600 млн. на 1 мм3 (рис. А.30) 194.

    Рис. А.30. Синаптическое соединение нейронов (в середине — область синапса при большем увеличении). Терминальная бляшка пресинаптического нейрона содержит пузырьки с запасом нейромедиатора и митохондрии, доставляющие энергию, необходимую для передачи нервного сигнала.
    Место перехода нервного импульса с одного нейрона на другой представляет собой, собственно, не точку контакта, а скорее узкий промежуток, называемый синаптической щелью . Речь идет о щели шириной от 20 до 50 нанометров (миллионных долей миллиметра), которая с одной стороны ограничена мембраной пресинаптической бляшки нейрона, передающего импульс, а с другой — постсинаптической мембраной дендрита или тела другого нейрона, принимающего нервный сигнал и затем передающего его дальше.

    Нейромедиаторы. Именно в синапсах происходят процессы, в результате которых химические вещества, освобождаемые пресинаптической мембраной, передают нервный сигнал с одного нейрона на другой. Эти вещества, получившие название нейромедиаторов (или просто медиаторов), — своего рода «мозговые гормоны» (нейрогормоны) — накапливаются в пузырьках синаптических бляшек и освобождаются, когда по аксону сюда приходит нервный импульс.

    После этого медиаторы диффундируют в синаптическую щель и присоединяются к специфическим рецепторным участкам постсинаптической мембраны, т. е. к таким участкам, к которым они «подходят, как ключ к замку». В результате этого проницаемость постсинаптической мембраны изменяется, и таким образом сигнал передается с одного нейрона на другой; медиаторы могут также и блокировать передачу нервных сигналов на уровне синапса, уменьшая возбудимость постсинаптического нейрона.

    Выполнив свою функцию, медиаторы расщепляются или нейтрализуются ферментами либо всасываются обратно в пресинаптическое окончание, что приводит к восстановлению их запаса в пузырьках к моменту прихода следующего импульса (рис. А.31).


    Рис. А.31. 1а) Медиатор А, молекулы которого освобождаются из концевой бляшки нейрона I, связывается специфическими рецепторами на дендритах нейрона II. Молекулы X, которые по своей конфигурации не подходят к этим рецепторам, занять их не могут и потому не вызывают каких-либо синаптических эффектов. 1б) Молекулы М (например, молекулы некоторых психотропных препаратов) сходны по своей конфигурации с молекулами нейромедиатора А и поэтому могут связываться с рецепторами для этого медиатора, таким образом мешая ему выполнять свои функции. Например, ЛСД мешает серотонину подавлять проведение сенсорных сигналов. 2а) и 2б) Некоторые вещества, называемые нейромодуляторами, способны воздействовать на окончание аксона, облегчая или подавляя высвобождение нейромедиатора.
    Возбуждающая или тормозная функция синапса зависит главным образом от типа выделяемого им медиатора и от действия последнего на постсинаптическую мембрану. Некоторые медиаторы всегда оказывают только возбуждающее действие, другие — только тормозное (ингибирующее), а третьи в одних отделах нервной системы играют роль активаторов, а в других — ингибиторов.

    Функции главных нейромедиаторов. В настоящее время известно несколько десятков этих нейрогормонов, но их функции изучены пока недостаточно. Сказанное, например, относится к ацетилхолину , который участвует в мышечном сокращении, вызывает замедление сердечного и дыхательного ритма и инактивируется ферментом ацетилхолинэстеразой 195. Не вполне изучены и функции таких веществ из группы моноаминов , как норадреналин, отвечающий за бодрствование мозговой коры и учащение сердечного ритма, дофамин , присутствующий в «центрах удовольствия» лимбической системы и некоторых ядрах ретикулярной формации, где он участвует в процессах избирательного внимания, или серотонин , который регулирует сон и определяет объем информации, циркулирующей в сенсорных путях. Частичная инактивация моноаминов происходит в результате их окисления ферментом моноаминоксидазой . Этот процесс, обычно возвращающий активность мозга к нормальному уровню, в некоторых случаях может приводить к чрезмерному ее снижению, что в психологическом плане проявляется у человека в чувстве подавленности (депрессии).
    Гамма-аминомасляная кислота (ГAMК ) представляет собой нейромедиатор, выполняющий примерно ту же физиологическую функцию, что и моноаминоксидаза. Ее действие состоит главным образом в снижении возбудимости мозговых нейронов по отношению к нервным импульсам.

    Наряду с нейромедиаторами существует группа так называемых нейромодуляторов , которые в основном участвуют в регуляции нервного ответа, взаимодействуя с медиаторами и видоизменяя их эффекты. В качестве примера можно назвать вещество P и брадикинин , участвующие в передаче болевых сигналов. Освобождение этих веществ в синапсах спинного мозга, однако, может быть подавлено секрецией эндорфинов и энкефалина , которая таким образом приводит к уменьшению потока болевых нервных импульсов (рис. А.31, 2а). Функции модуляторов выполняют и такие вещества, как фактор S , играющий, по-видимому, важную роль в процессах сна, холецистокинин , ответственный за чувство сытости, ангиотензин , регулирующий жажду, и другие агенты.

    Нейромедиаторы и действие психотропных веществ. В настоящее время известно, что различные психотропные препараты действуют на уровне синапсов и тех процессов, в которых участвуют нейромедиаторы и нейромодуляторы.

    Молекулы этих препаратов по своей структуре сходны с молекулами определенных медиаторов, что и позволяет им «обманывать» различные механизмы синаптической передачи. Таким образом они нарушают действие истинных нейромедиаторов, либо занимая их место на рецепторных участках, либо мешая им всасываться обратно в пресинаптические окончания или подвергаться разрушению специфическими ферментами (рис. А.31, 2б).

    Установлено, например, что ЛСД, занимая серотониновые рецепторные участки, мешает серотонину затормаживать приток сенсорных сигналов. Таким образом ЛСД открывает доступ к сознанию для самых разнообразных стимулов, непрерывно атакующих органы чувств.

    Кокаин усиливает эффекты дофамина, занимая его место в рецепторных участках. Подобным же образом действуют морфин и другие опиаты, мгновенный эффект которых объясняется тем, что они быстро успевают занять рецепторные участки для эндорфинов 196.
    Действие амфетаминов обусловлено тем, что они подавляют обратное поглощение норадреналина пресинаптическими окончаниями. В результате накопление избыточного количества нейрогормона в синаптической щели приводит к чрезмерной степени бодрствования мозговой коры.

    Принято считать, что эффекты так называемых транквилизаторов (например, валиума) объясняются главным образом их облегчающим влиянием на действие ГАМК в лимбической системе, что приводит к усилению тормозных эффектов этого медиатора. Наоборот, как антидепрессанты действуют главным образом ферменты, инактивирующие ГАМК, или такие препараты, как, например, ингибиторы моноаминоксидазы , введение которых увеличивает количества моноаминов в синапсах.

    Смерть от некоторых отравляющих газов наступает вследствие удушья. Такое действие этих газов связано с тем, что их молекулы блокируют секрецию фермента, разрушающего ацетилхолин. Между тем ацетилхолин вызывает сокращение мышц и замедление сердечного и дыхательного ритма. Поэтому его накопление в синаптических пространствах приводит к угнетению, а затем и полной блокаде сердечной и дыхательной функций и одновременному повышению тонуса всей мускулатуры.

    Изучение нейромедиаторов еще только начинается, и можно ожидать, что в скором времени будут открыты сотни, а может быть и тысячи этих веществ, многообразные функции которых определяют их первостепенную роль в регуляции поведения.
    Дополнение А.4. Нервная активность и сканер
    До недавнего времени единственным методом, позволяющим регистрировать электрическую активность мозга с помощью электродов, размещенных в разных участках черепной коробки, была электроэнцефалография (см. документ 4.1). Но записи, которые получают этим методом, с трудом поддаются расшифровке, и поэтому чаще всего электроэнцефалография дает лишь грубое представление об активности популяции нейронов, расположенных под электродом.

    Недавно, однако, появилось другое устройство для регистрации нервной активности. Речь идет о так называемом сканере, позволяющем составлять довольно точные карты нервной активности в различных областях головного мозга.

    Это устройство осуществляет томографическое сканирование головного мозга с помощью позитронной эмиссии (откуда и другое название сканера — позитронно-эмиссионный томограф). В основе метода лежит то обстоятельство, что для работы мозга используется главным образом глюкоза: чем выше активность данного участка, тем больше глюкозы ему требуется для поддержания работы.

    Первый из такого рода методов заключается в выявлении активных зон мозга после инъекции в кровь радиоактивных изотопов (например, фтора-18 или углерода-11), способных испускать положительно заряженные частицы, называемые позитронами . Столкновение позитронов с отрицательно заряженными электронами в нейронах сопровождается «взрывом», в результате которого образуются два разлетающихся в противоположных направлениях фотона (см. документ 5.2). Эти кванты света, число которых должно быть больше в усиленно снабжаемых кровью активных участках, улавливались затем камерой с фоточувствительными элементами, производившей таким образом послойный анализ головного мозга. После определения компьютером точки возникновения каждого «взрыва» информация — точка за точкой — выводилась на телевизионный экран с изображением последовательных срезов мозга (рис. А.32).


    Рис. А.32. Позитронно-эмиссионный томограф (ПЭТ) благодаря камере с фоточувствительными элементами и компьютеру, интегрирующему данные, позволяет следить за распределением активности в головном мозгу и воспроизводить получаемую картину на экране.
    Однако то обстоятельство, что активность нейронов приходилось оценивать косвенным образом — по притоку крови, сильно снижало точность результатов. Недавно был предложен метод прямого определения активности нейронов с помощью внутриклеточной метки. Такая возможность появилась, когда было найдено вещество, которое клетка поглощает вместо глюкозы, но не может использовать. В результате это вещество — дезоксиглюкоза — способно накапливаться в нейронах и благодаря радиоактивной метке указывать места повышенной нервной активности. Поскольку, однако, позитрон за то время, которое проходит между его эмиссией и «взрывом» при столкновении с отрицательно заряженным электроном, успевает пробежать несколько миллиметров, получаемые изображения все-таки остаются несколько неточными. Тем не менее можно надеяться на быстрое усовершенствование описанного метода или на разработку других методов, которые позволят точнее картировать активность в мозгу.

    Тем временем существующие методы уже дали возможность показать, что для бодрствования, например, характерна более высокая нервная активность в лобной доле, а эффекты сенсорной стимуляции выражены в тех участках мозга, которые имеют к данной сенсорной модальности более тесное отношение, чем к другим модальностям (Mazziota et al., 1982) (рис. А.33).


    Рис. А.33. Картины активности головного мозга, полученные с помощью ПЭТ (более активные участки выглядят более темными). А ) Активность в затылочных долях в зависимости от зрительного восприятия. Слева: глаза испытуемого закрыты. В середине: испытуемый открывает глаза и видит однообразный белый фон. Справа: испытуемый видит перед собой парк. (По Phelps et al., 1982). Б ) Активность в височных и лобных долях во время прослушивания испытуемым рассказа о Шерлоке Холмсе (в середине ) и «Бранденбургского концерта» И. С. Баха (справа ). Слева: мозг испытуемого с заткнутыми ушами.
    Разумеется, в изучении нервной активности сделаны только первые шаги. Но, как полагает Шанжё, настанет, может быть, день, когда на телевизионном экране появится картина, воспроизводящая мысленный образ.
    Резюме
    Организация нервной системы
    Нервная система выполняет две главные функции: функцию передачи информации , за которую ответственны периферическая нервная система и связанные с ней рецепторы и эффекторы, и функцию обработки информации и программирования реакций , осуществляемую на уровне центральной нервной системы.
    Рецепторы
    1. Существует большое разнообразие рецепторов — от рецепторов кожи и мышц до вкусовых сосочков языка, рецепторов носовой полости, внутреннего уха и, наконец, фоторецепторов сетчатки.

    2. Кожная чувствительность позволяет воспринимать давление, тепло, холод и боль; ощущения возникают в результате раздражения свободных, инкапсулированных или корзинчатых нервных окончаний, расположенных в наружных слоях кожи по всей поверхности тела. Кинестетическая чувствительность дает возможность определять положение тела и конечностей в пространстве; для этого используются рецепторы суставов и сухожилий, а также мышечные веретёна, находящиеся в поперечнополосатых мышцах. Чувство равновесия основывается на информации, получаемой чувствительными волосками внутреннего уха при движении жидкости в полукружных каналах и других полостях вестибулярного аппарата.

    3. Химическая чувствительность включает дополняющие друг друга вкус и обоняние . Ощущения вкуса обусловлены реакцией сосочков языка на соприкосновение с объектом; в восприятии запахов участвуют особые клетки, расположенные в верхней части носовой полости под обонятельными луковицами мозга.

    4. Слух обусловлен преобразованием колебаний молекул воздуха в колебания жидкости в улитке внутреннего уха, которые в свою очередь приводят к возбуждению чувствительных клеток. Высота звука оценивается по тому, в каком месте улитки колебания жидкости выражены особенно сильно, а его интенсивность по числу реагирующих волосковых клеток.

    5. Основу зрения составляют реакции фотопигментов в клетках сетчатки на воздействие фотонов — квантов энергии световых волн. Яркость света кодируется нервными сигналами от палочек сетчатки, а цвет — сигналами от колбочек , сосредоточенных главным образом в центральной ямке сетчатки. Затем клетки двух других типов последовательно передают информацию волокнам зрительного нерва, по которым она направляется в головной мозг.
    Эффекторы
    1. Эффекторами могут быть мышцы и железы. Мышцы разного типа образуют соответственно гладкую и поперечнополосатую мускулатуру; железы подразделяются на экзокринные и эндокринные.

    2. Для гладкой мускулатуры характерно медленное сокращение; она находится в стенках внутренних органов, и ею управляет вегетативная нервная система. Поперечнополосатая мускулатура , в которой пучки волокон исчерчены поперечными полосками, ответственна за движение различных частей тела; ею управляют импульсы, приходящие по двигательным нервным волокнам. Поперечнополосатые мышцы выполняют различные функции, выступая в качестве инициаторов движения, антагонистов, синергистов и фиксаторов или же действуя против силы тяжести.

    3. Эндокринные железы , например слюнные, желудочные, слезные и др., вырабатывают секреты, которые выводятся во внешнюю среду или в сообщающиеся с ней полости.

    4. Эндокринные железы вырабатывают секреты, называемые гормонами, которые, напротив, поступают в замкнутый круг кровообращения. Деятельность щитовидной железы существенно влияет на настроение и мотивацию человека. Паращитовидные железы участвуют в регуляции уровня кальция в крови. Тимус , по-видимому, функционирует в период роста организма. Находящиеся в поджелудочной железе островки Лангерганса секретируют инсулин и глюкагон — гормоны, вызывающие противоположные эффекты; в то время как первый из них отвечает за накопление сахара в печени, второй, наоборот, освобождает его из печени в качестве «топлива» для мышц. Надпочечники состоят из двух частей: коркового слоя, который секретирует участвующие в метаболизме кортикоиды, и мозгового слоя, который вырабатывает адреналин и норадреналин, в значительной степени определяющие возбудимость организма. Половые железы ответственны за развитие вторичных половых признаков в период полового созревания, а также за действие механизмов, определяющих оплодотворение яйцеклетки и ее имплантацию в стенку матки.

    5. Гипофиз является «главной» эндокринной железой организма, которая не только регулирует секреторную деятельность ряда других желез, но и сама выделяет различные гормоны, ответственные за процессы роста, обратное всасывание воды в почках, сокращения матки во время родов и послеродовое усиление выработки молока.
    Периферическая нервная система
    1. Эта система состоит из соматической нервной системы, включающей афферентные (сенсорные) и эфферентные (двигательные) волокна, и вегетативной нервной системы, представленной двумя антагонистическими отделами — симпатическим и парасимпатическим.

    2. Соматическая нервная система включает 31 пару спинномозговых нервов, связывающих спинной мозг с рецепторами и эффекторами тела, и 12 пар черепномозговых нервов, выполняющих аналогичные функции в отношении головы и шеи.

    3. Вегетативная нервная система состоит из двух антагонистических отделов. Симпатическая нервная система активирует организм, подготавливая его к энергичным действиям, а парасимпатическая , наоборот, способствует расслаблению организма для восстановления его сил.
    Центральная нервная система
    1. Центральная нервная система состоит из спинного мозга и различных структур головного мозга .

    2. Спинной мозг служит для передачи информации, приходящей по афферентным волокнам, в высшие нервные центры или команд от этих центров — эфферентным волокнам. Кроме того, в спинном мозгу программируются рефлексы, пути которых (рефлекторные дуги) состоят из последовательно соединенных сенсорных волокон, вставочных нейронов и двигательных волокон.

    3. Головной мозг представляет собой часть нервной системы, заключенную в черепную коробку. Он включает два «этажа», нижний из которых — это ствол головного мозга, а верхний — большой мозг. Эти структуры размещены вокруг четырех желудочков, заполненных спинномозговой жидкостью.

    4. Ствол мозга включает продолговатый мозг , в котором перекрещиваются сенсорные и моторные нервные волокна и локализованы различные рефлекторные центры жизненно важных функций организма, варолиев мост , ответственный за сложные рефлексы, и средний мозг , служащий местом переключения зрительных и слуховых путей.

    5. Мозжечок , расположенный в передней части мозгового ствола, отвечает за сохранение равновесия и двигательную координацию.

    6. Ретикулярная формация проходит через ствол, достигая большого мозга. Она образована рядом ядер, отростки которых ветвятся в виде сетки и доходят до коры; в активации коры и состоит функция ретикулярной формации.

    7. Большой мозг в свою очередь подразделяется на два «этажа» — промежуточный мозг и расположенный над ним передний мозг, состоящий из двух мозговых полушарий.

    8. Промежуточный мозг включает прежде всего таламус , который образован двумя большими скоплениями ядер, соединенными между собой серой комиссурой, и служит главным образом центром распределения информации, направляющейся к коре. Расположенный под таламусом гипоталамус объединяет около десятка пар ядер, являющихся центрами мотиваций и эмоций. Гипоталамус тесно связан с лимбической системой , образующей вокруг промежуточного мозга кольцо, многочисленные структуры которого играют важную роль в регуляции эмоционального поведения и в процессах памяти.

    9. Передний мозг состоит главным образом из коры — серого вещества, покрывающего два мозговых полушария, связанных между собой сотнями очерчивания корковые доли, внутри которых, вдоль извилин, ограниченных более мелкими бороздами, располагаются сенсорные, моторные и ассоциативные зоны.

    10. Сенсорные зоны расположены в разных долях мозга. В восходящей теменной извилине находится зона общей чувствительности , которая получает нервные сигналы от рецепторов кожи. Зрительная чувствительность локализуется в затылочных долях, каждая из которых получает информацию из противоположной половины поля зрения. Слуховая чувствительность представлена в двух височных долях, причем каждая из них воспринимает сигналы от обоих ушей. Зона вкусовой чувствительности располагается книзу от зоны общей чувствительности, а обонятельную зону образуют обонятельные луковицы, лежащие под полушариями мозга.

    11. Моторные зоны находятся в восходящей лобной извилине. Эта извилина через выходящие из нее пучки нервных волокон, идущие через головной и спинной мозг вниз, управляет скелетной мускулатурой.

    12. Ассоциативные зоны не выполняют каких-либо специфических функций. Они служат для переработки информации; например, примыкающие к сенсорным областям гностические зоны ответственны за процесс восприятия, а соседние с двигательной областью праксические зоны обеспечивают тонкую моторику и автоматические движения. Ассоциативные зоны, расположенные в лобной доле и в месте соединения трех других долей, особенно тесно связаны с мыслительной деятельностью, речью, памятью и осознанием положения тела в пространстве.

    13. Специализация мозговых полушарий достигает наивысшего развития у человека. Известно, что примерно у 90 % людей доминирует левое полушарие мозга, в котором расположены центры речи и которое в известной мере определяет положительную окраску эмоциональных состояний; по-видимому, левое полушарие лучше развито у женщин. Правое полушарие, лучше развитое у мужчин, вероятно, отвечает главным образом за процессы восприятия, оценку пространственных отношений, художественное творчество, а также за придание негативной окраски эмоциям.
    Структура и функции нейрона
    1. Нейрон служит для передачи информации. Он состоит из трех частей: клеточного тела с ядром и весьма многочисленными митохондриями, дендритов , проводящих нервные сигналы к телу клетки, и аксона , передающего импульсы к эффекторам или к другим нейронам с помощью соединений, называемых синапсами .

    2. Нервные импульсы сами по себе не несут какой-либо специфической информации; расшифровка их значения скорее определяется той областью коры, которую они возбуждают.

    3. Отдельный импульс , или потенциал действия , возникает у основания аксона в результате активации дендритов и тела нейрона.

    4. Проведение импульса по нервному волокну происходит в результате деполяризации последовательных участков его мембраны, за которой следует период рефрактерности.

    5. Нервный импульс характеризуется постоянной амплитудой и скоростью распространения. Он подчиняется закону «всё или ничего»: либо он не возникает вовсе, либо — если превышен порог возбуждения — все связанные с ним события сразу развертываются «в полную силу».

    6. Передача нервного сигнала с одного нейрона на другой происходит через узкую синаптическую щель . Нейромедиаторы, выделяемые в эту щель концевыми бляшками пресинаптического нейрона, связываются рецепторными участками мембраны, постсинаптического нейрона и вызывают его возбуждение или, наоборот, уменьшают его возбудимость.

    7. Каждый нейромедиатор выполняет в данном отделе нервной системы специфическую функцию. Воздействие медиатора на уровне синапсов может привести к сокращению или расслаблению мускулатуры, ускорению или замедлению сердечного и дыхательного ритма, активации или угнетению функции мозговой коры, пробуждению внимания или засыпанию и т. п.

    8. Эффекты нейромедиаторов регулируются другими нейромедиаторами, взаимодействующими с ними.

    9. Действие психотропных препаратов можно объяснить их способностью связываться с определенными рецепторными участками постсинаптической мембраны, т. е. занимать место соответствующих нейромедиаторов и тем самым изменять характер передачи нервных сигналов.
    1   ...   54   55   56   57   58   59   60   61   ...   67


    написать администратору сайта