Главная страница
Навигация по странице:

  • Оксидоредуктазы

  • A + В

  • AВ + С

  • АВ + Н2О

  • А + В

  • Номенклатура ферментов

  • Изоформы креатинкиназы.

  • РК 1 БИОХИМИЯ. Классификация ферментов


    Скачать 29.04 Kb.
    НазваниеКлассификация ферментов
    Дата18.11.2022
    Размер29.04 Kb.
    Формат файлаdocx
    Имя файлаРК 1 БИОХИМИЯ.docx
    ТипДокументы
    #797030

    1. Современная классификация ферментов базируется на характеристике химической реакции, катализируемой ферментом. Различают шесть основных классов ферментов.

    1. Оксидоредуктазы – ферменты, катализирующие окислительно-восстановительные реакции (ОВР). Схематично это выглядит так:

    A + В  С + D

    1. Трансферазы – ферменты, катализирующие перенос химических группировок с одной молекулы на другую

    AВ + С → А + ВС

    3. Гидролазы – ферменты, ускоряющие расщепление сложных веществ до простых путем присоединения воды (т.е. путем гидролиза);

    АВ + Н2О А – Н + В – ОН

    4. Лиазы – ферменты ускоряют реакции распада веществ без участия воды или способствуют присоединению групп атомов по месту разрыва двойных связей;

    АВ → А + В

    5. Изомеразы – ферменты, катализирующие изомерные превращения, то есть перенос отдельных химических групп в пределах одной молекулы:

    А  В

    6. Синтетазы (или Лигазы) – ферменты катализирующие реакции синтеза (т.е. соединяют молекулы между собой), происходящие за счет энергии АТФ:

    А + В → АВ

    энергия

    АТФ + Н2О → АДФ + H3PO4

    Номенклатура ферментов. Каждый класс в свою очередь делится на подклассы (от 4-13), а те на подподклассы.

    Для каждого фермента существует шифр, состоящий из 4 цифр – первая показывает номер класса, вторая – номер подкласса, третья – номер подподкласса, четвертая цифра указывает порядковый номер фермента в его подподклассе. Например, шифр для липазы поджелудочной железы (п/ж) – 3.1.1.3., это означает, что липаза п/ж относится к гидролазам, (третий класс, т.е. ускоряет гидролиз), к первому подклассу – эстеразам (т.е. ускоряет гидролиз сложно-эфирных связей), к первому подподклассу (т.е. ускоряет гидролиз сложно-эфирных связей, образованных карбоновыми кислотами), место в подподклассе – третье.

    Название фермента, как правило состоит из двух частей. Первая часть отражает название субстрата, превращения которого катализируется данным ферментом. Вторая часть названия имеет окончание «-аза», указывает на природу реакции. Например, фермент, отщепляющий от молочной кислоты (лактата) атомы водорода, называется лактатдегидрогеназа. А фермент, катализирующий изомеризацию глюкозо-6-фосфата в фруктозо-6-фосфат называется глюкозофосфатизомераза. Фермент, участвующий в синтезе гликогена называется гликогенсинтетаза.

    17.

    Изоферменты– это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам (сродству к субстрату, максимальной скорости катализируемой реакции, электрофоретической подвижности, разной чувствительности к ингибиторам и активаторам, оптимуму рН и термостабильности). Изоферменты имеют четвертичную структуру, которая образована четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.

    В качестве примера можно рассмотреть лактатдегидрогеназу (ЛДГ), фермент, который катализирует обратимую реакцию:

     НАДН2         НАД+

    пируват    ←ЛДГ→   лактат

    ЛДГ существует в виде 5 изоформ, каждая из которых состоит из 4-х протомеров (субъединиц) 2 типов М (muscle) и Н (heart). Синтез протомеров М и Н типа кодируется двумя разными генетическими локусами. Изоферменты ЛДГ различаются на уровне четвертичной структуры: ЛДГ1(НННН), ЛДГ2(НННМ), ЛДГ3(ННММ), ЛДГ4(НМММ), ЛДГ5(ММММ).

    Полипептидные цепи Н и М типа имеют одинаковую молекулярную массу, но в составе первых преобладают карбоновые аминокислоты, последних – диаминокислоты, поэтому они несут разный заряд и могут быть разделены методом электрофореза.

    Кислородный обмен в тканях влияет на изоферментный состав ЛДГ.  Где доминирует аэробный  обмен, там преобладают ЛДГ1, ЛДГ2(миокард, надпочечники), где анаэробный обмен - ЛДГ4, ЛДГ5(скелетная мускулатура,  печень). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ.  У  зародыша преобладают ЛДГ4, ЛДГ5. После рождения в некоторых тканях происходит увеличение содержания ЛДГ1, ЛДГ2.

    Существование изоформ  повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям. По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.

    Изоформы креатинкиназы. Креатинкиназа (КК) катализирует реакцию образования креатинфосфата:



    Молекула КК - димер, состоящий из субъединиц двух типов: М (от англ, muscle - мышца) и В (от англ, brain - мозг). Из этих субъединиц образуются 3 изофермента - ВВ, MB, MM. Изофермент ВВ находится преимущественно в головном мозге, ММ - в скелетных мышцах и MB - в сердечной мышце. Изоформы КК имеют разную электрофоретическую подвижность (рис. 2-36).

    Активность КК в норме не должна превышать 90 МЕ/л. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.

    16

    В 1903 г. В. Генри сделал вывод о том, что необходимой стадией ферментативного катализа является соединение фермента с субстратом, в результате чего образуется фермент-субстратный комплекс. Развитие этой идеи привело к созданию общей теории действия ферментов; особенно большой вклад в неё в 1913г. внесли Л. Михаэлис и М. Ментен. Согласно их гипотезе процесс ферментативного катализа можно разделить на 3 стадии:

    1) диффузия субстрата к ферменту и стерическое связывание его с активным центром фермента, т.е. образование фермент-субстратного комплекса (ES);

    2) преобразование первичного комплекса в один или несколько активированных фермент-субстратных комплексов (ES*, ES**…);

    3) отделение продуктов (Р) реакции от активного центра и диффузия его



     

    Первая стадия обычно непродолжительна и зависит от концентрации субстрата в среде, а также его диффузии к активному центру фермента. Комплекс образуется практически мгновенно. Субстрат присоединяется к активному центру в нескольких точках, образуя хелатные (клешневидные) комплексы. Присоединение осуществляется связями разного характера, в основном слабыми (водородные, электростатические, гидрофобные, координационные), ковалентные связи встречаются редко. На этой стадии изменение энергии активации незначительно, ориентация субстрата и активного центра способствует их сближению и прохождению реакции.

    Вторая стадия наиболее медленная и лимитирует скорость всего катализа в целом. Её длительность зависит от энергии активации данной химической реакции. На этой стадии происходит расшатывание связей субстрата, их разрыв или образование новых связей в результате взаимодействия с активными группами фермента. Благодаря образованию активированных переходных комплексов снижается энергия активации реакции.

    Третья стадия практически мгновенна. Она определяется скоростью диффузии продуктов реакции в окружающую среду.

    15.

    Механизм действия простого и сложного ферментов одинаков, так как активные центры в их молекулах выполняют сходные функции.

    В основе действия ферментов лежит их способность ускорять реакции за счет уменьшения энергии активации субстрата. Ферменты деформируют электоронные оболочки субстратов, облегчая таким образом взаимодействие между ними. Энергитя, необходимая для того, чтобы привести молекулы в активное состояние, называется энергией активации. Роль обычного катализатора (и еще в большей мере биологического) состоит в том, что он снижает энергию активации субстрата.

    Основы механизма действия ферментов были изучены в начале XX в. В 1902 г. английский химик А.Браун высказал предположение о том, что фермент, воздействуя на субстрат, должен образовать с ним промежуточный фермент — субстратный комплекс. Одновременно и независимо от А. Брауна это же предположение высказал французский ученый В. Анри. В 1913 г. Л. Михэлис и М. Ментэн подтвердили и развили представления о механизме действия ферментов, который можно представить в виде схемы:

    Е + S [E-S]' [E-S]' [Е-Р]  Е + Р,

    где Е — фермент, S — субстрат, Р — продукт.

    На первой стадии ферментативного катализа происходит образование фермент-субстратного комплекса, где фермент и субстрат могут быть связаны ионной, ковалентной или иной связью. Образование комплекса E-S происходит практически мгновенно.

    На второй стадии субстрат под воздействием связанного с ним фермента видоизменяется и становится более доступным для соответствующей химической реакции. Эта стадия определяет скорость всего процесса. На этих стадиях ферментативного катализа происходят неоднократные изменения третичной структуры белка фермента, приводящие к последовательному сближениюс субстратом и ориентации в пространстве тех активных групп, которые взаимодействуют друг с другом на различных этапах преобразования субстратов

    На третьей стадии происходит химическая реакция, в результате которой образуется комплекс продукта реакции с ферментом.

    Заключительным процессом является высвобождение продукта реакции из комплекса.

    В организме превращение веществ до конечных продуктов происходит в несколько этапов, каждый из которых катализируется отдельным ферментом. Сумма энергии активации промежуточных реакций ниже энергии активации, необходимой для одновременного расщепления субстрата.

    14.

    Ферменты обладают всеми общими свойствами обычных катализаторов. Но, по сравнению с обычными катализаторами, все ферменты являются белками. Поэтому они обладают особенностями, отличающими их от обычных катализаторов. Эти особенности ферментов, как биологических катализаторов, иногда называют общими свойствами ферментов. К ним относятся:

    1. Высокая эффективность действия. Ферменты могут ускорять реакцию в 108 -1012 раз

    2. Высокая избирательность ферментов к субстратам (субстратная специфичность) и к типу катализируемой реакции (специфичность действия)

    3. Высокая чувствительность ферментов к неспецифическим физико-химическим факторам среды - температуре, рН, ионной силе раствора и т.д.

    4. Высокая чувствительность к химическим реагентам;

    5. Высокая и избирательная чувствительность к физико-химическим воздействиям тех или иных химических веществ, которые благодаря этому могут взаимодействовать с ферментом, улучшая или затрудняя его работу

    – катализируют только энергетически возможные реакции; – не смещают положения равновесия, а лишь ускоряют его достижение; – не расходуются в процессе реакции; – не участвуют в образовании продуктов реакции.

    13.

    Ферменты обладают более высокой специфичностью действия по сравнению с неорганическими катализаторами. Различают специфичность по отношению к типу химической реакции, катализируемой ферментом, и специфичность по отношению к субстрату. Эти два вида специфичности характерны для каждого фермента.

    Специфичность по отношению к субстрату– это предпочтительность фермента к субстрату определенной структуры в сравнении с другими субстратами. Различают 4 вида субстратной специфичности ферментов:

    Абсолютная специфичность– способность фермента катализировать превращение только одного субстрата. Например – глюкокиназа фосфорилирует только глюкозу, аргиназа расщепляет только аргинин, уреаза – мочевину.

    Относительная специфичность– фермент катализирует превращение нескольких субстратов, имеющих один тип связи. Например – липаза расщепляет сложноэфирную связь в триацилглицеролах.

    Относительная групповая специфичность– фермент катализирует превращение нескольких субстратов, имеющих один тип связи, но требуется наличие определенных функциональных групп, входящих в состав субстратов. Например, все протеолитические ферменты расщепляют пептидную связь, но пепсин – образованную аминогруппами ароматических аминокислот, химотрипсин – образованную карбоксильными группами этих же аминокислот, трипсин – пептидную связь, образованную карбоксильной группой лизина, аргинина.

    Стереохимическая специфичность– фермент катализирует превращение только одного стереоизомера. Например, бактериальная аспартатдекарбоксилаза катализирует декарбоксилирование толькоL-аспартата и не действует наD-аспарагиновую кислоту.

    Специфичность по отношению к реакции


    Каждый фермент катализирует одну реакцию или группу реакций одного типа. Часто одно и то же химическое соединение выступает как субстрат для разных ферментов, причем каждый из них катализирует специфическую для него реакцию, приводящую к образованию разных продуктов. Специфичность по типу реакции лежит в основе единой классификации ферментов.

    12.

    Активнный и аллостерический центры (см. Конспект лекций карташева в тетради)


    написать администратору сайта