Глантз. Книга Primer of biostatistics fourth edition
Скачать 6.07 Mb.
|
Рис. 3.6. А. Четыре случайные выборки по 7 человек в каждой извлекли из той же сово- купности (население городка) 200 раз. Каждый раз рассчитывали значение F и наноси- ли его на график. Результаты для выборок с рис. 3.2 и 3.5 помечены черным. Б. Десять наибольших значений помечень черньм. Область черных кружков начинается со значе- ния F, равного 3,0. ГЛАВА 3 59 • Совокупность нормально распределена. • Дисперсии всех выборок равны. При существенном нарушении хотя бы одного из этих усло- вий нельзя пользоваться ни таблицей 3.1, ни вообще дисперси- онным анализом. В рассмотренном нами эксперименте исследовалась зависи- мость только от одного фактора — диеты. Дисперсионный ана- Рис. 3.6. (продолжение). В. Из той же совокупности извлекли все воэможнье наборы из 4 выборок по 7 человек в каждой и построили распределение F. От- дельные значения слились, превратившись в песчинки. 5% песчинок с самыми большими значениями F помечены черным. Г. Такое распределение F получит- ся, если извлекать выборки из бесконечной совокупности. Пяти процентам са- мых высоких значений F соответствует заштрихованная область (ее площадь составляет 5% от общей площади всей кривой). «Большие» значения F начина- ются там, где начинается эта область, то есть с F = 3,01. СРАВНЕНИЕ НЕСКОЛЬКИХ ГРУПП: ДИСПЕРСИОННЫЙ АНАЛИЗ Г 0 1,0 2,0 3,0 4,0 Значение F 60 Т аб лица 3.1. Критиче ские зна чения F для α = 0,05 ( обычный шрифт ) и α = 0,01 ( жирный шрифт ) ν меж ν вну 1234 56789 10 11 12 14 16 20 24 30 40 50 75 10 0 20 0 50 0 ∞ 1 161 199 216 225 230 234 237 239 241 242 243 244 245 246 248 249 250 251 252 253 253 254 254 254 4052 4999 5404 5624 5764 5859 5928 5981 6022 6056 6083 6107 6143 6170 6209 6234 6260 6286 6302 6324 6334 6350 6360 6366 2 18,51 19,00 19,16 19,25 19,30 19,33 19,35 19,37 19,38 19,40 19,40 19,41 19,42 19,43 19,45 19,45 19,46 19,47 19,48 19,48 19,49 19,49 19,49 19,50 98,50 99,00 99,16 99,25 99,30 99,33 99,36 99,38 99,39 99,40 99,41 99,42 99,43 99,44 99,45 99,46 99,47 99,48 99,48 99,48 99,49 99,49 99,50 99,50 3 10,13 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 8,79 8,76 8,74 8,71 8,69 8,66 8,64 8,62 8,59 8,58 8,56 8,55 8,54 8,53 8,53 34,12 30,82 29,46 28,71 28,24 27,91 27,67 27,49 27,34 27,23 27,13 27,05 26,92 26,83 26,69 26,60 26,50 26,41 26,35 26,28 26,24 26,18 26,15 26,13 4 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6,00 5,96 5,94 5,91 5,87 5,84 5,80 5,77 5,75 5,72 5,70 5,68 5,66 5,65 5,64 5,63 21,20 18,00 16,69 15,98 15,52 15,21 14,98 14,80 14,66 14,55 14,45 14,37 14,25 14,15 14,02 13,93 13,84 13,75 13,69 13,61 13,58 13,52 13,49 13,46 5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 4,74 4,70 4,68 4,64 4,60 4,56 4,53 4,50 4,46 4,44 4,42 4,41 4,39 4,37 4,37 16,26 13,27 12,06 11,39 10,97 10,67 10,46 10,29 10,16 10,05 9,96 9,89 9,77 9,68 9,55 9,47 9,38 9,29 9,24 9,17 9,13 9,08 9,04 9,02 6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 4,06 4,03 4,00 3,96 3,92 3,87 3,84 3,81 3,77 3,75 3,73 3,71 3,69 3,68 3,67 13,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7,87 7,79 7,72 7,60 7,52 7,40 7,31 7,23 7,14 7,09 7,02 6,99 6,93 6,90 6,88 7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,68 3,64 3,60 3,57 3,53 3,49 3,44 3,41 3,38 3,34 3,32 3,29 3,27 3,25 3,24 3,23 12,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 6,62 6,54 6,47 6,36 6,28 6,16 6,07 5,99 5,91 5,86 5,79 5,75 5,70 5,67 5,65 8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 3,35 3,31 3,28 3,24 3,20 3,15 3,12 3,08 3,04 3,02 2,99 2,97 2,95 2,94 2,93 11,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 5,81 5,73 5,67 5,56 5,48 5,36 5,28 5,20 5,12 5,07 5,00 4,96 4,91 4,88 4,86 9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 3,14 3,10 3,07 3,03 2,99 2,94 2,90 2,86 2,83 2,80 2,77 2,76 2,73 2,72 2,71 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 5,26 5,18 5,1 1 5,01 4,92 4,81 4,73 4,65 4,57 4,52 4,45 4,41 4,36 4,33 4,31 10 4,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 2,94 2,91 2,86 2,83 2,77 2,74 2,70 2,66 2,64 2,60 2,59 2,56 2,55 2,54 10,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 4,85 4,77 4,71 4,60 4,52 4,41 4,33 4,25 4,17 4,12 4,05 4,01 3,96 3,93 3,91 11 4,84 3,98 3,59 3,36 3,20 3,09 3,01 2,95 2,90 2,85 2,82 2,79 2,74 2,70 2,65 2,61 2,57 2,53 2,51 2,47 2,46 2,43 2,42 2,41 9,65 7,21 6,22 5,67 5,32 5,07 4,89 4,74 4,63 4,54 4,46 4,40 4,29 4,21 4,10 4,02 3,94 3,86 3,81 3,74 3,71 3,66 3,62 3,60 12 4,75 3,89 3,49 3,26 3,1 1 3,00 2,91 2,85 2,80 2,75 2,72 2,69 2,64 2,60 2,54 2,51 2,47 2,43 2,40 2,37 2,35 2,32 2,31 2,30 9,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 4,30 4,22 4,16 4,05 3,97 3,86 3,78 3,70 3,62 3,57 3,50 3,47 3,41 3,38 3,36 13 4,67 3,81 3,41 3,18 3,03 2,92 2,83 2,77 2,71 2,67 2,63 2,60 2,55 2,51 2,46 2,42 2,38 2,34 2,31 2,28 2,26 2,23 2,22 2,21 9,07 6,70 5,74 5,21 4,86 4,62 4,44 4,30 4,19 4,10 4,02 3,96 3,86 3,78 3,66 3,59 3,51 3,43 3,38 3,31 3,27 3,22 3,19 3,17 14 4,60 3,74 3,34 3,1 1 2,96 2,85 2,76 2,70 2,65 2,60 2,57 2,53 2,48 2,44 2,39 2,35 2,31 2,27 2,24 2,21 2,19 2,16 2,14 2,13 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,03 3,94 3,86 3,80 3,70 3,62 3,51 3,43 3,35 3,27 3,22 3,15 3,1 1 3,06 3,03 3,01 15 4,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 2,51 2,48 2,42 2,38 2,33 2,29 2,25 2,20 2,18 2,14 2,12 2,10 2,08 2,07 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 3,80 3,73 3,67 3,56 3,49 3,37 3,29 3,21 3,13 3,08 3,01 2,98 2,92 2,89 2,87 16 4,49 3,63 3,24 3,01 2,85 2,74 2,66 2,59 2,54 2,49 2,46 2,42 2,37 2,33 2,28 2,24 2,19 2,15 2,12 2,09 2,07 2,04 2,02 2,01 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 3,69 3,62 3,55 3,45 3,37 3,26 3,18 3,10 3,02 2,97 2,90 2,86 2,81 2,78 2,75 61 17 4,45 3,59 3,20 2,96 2,81 2,70 2,61 2,55 2,49 2,45 2,41 2,38 2,33 2,29 2,23 2,19 2,15 2,10 2,08 2,04 2,02 1,99 1,97 1,96 8,40 6,1 1 5,19 4,67 4,34 4,10 3,93 3,79 3,68 3,59 3,52 3,46 3,35 3,27 3,16 3,08 3,00 2,92 2,87 2,80 2,76 2,71 2,68 2,65 18 4,41 3,55 3,16 2,93 2,77 2,66 2,58 2,51 2,46 2,41 2,37 2,34 2,29 2,25 2,19 2,15 2,1 1 2,06 2,04 2,00 1,98 1,95 1,93 1,92 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 3,51 3,43 3,37 3,27 3,19 3,08 3,00 2,92 2,84 2,78 2,71 2,68 2,62 2,59 2,57 19 4,38 3,52 3,13 2,90 2,74 2,63 2,54 2,48 2,42 2,38 2,34 2,31 2,26 2,21 2,16 2,1 1 2,07 2,03 2,00 1,96 1,94 1,91 1,89 1,88 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 3,43 3,36 3,30 3,19 3,12 3,00 2,92 2,84 2,76 2,71 2,64 2,60 2,55 2,51 2,49 20 4,35 3,49 3,10 2,87 2,71 2,60 2,51 2,45 2,39 2,35 2,31 2,28 2,22 2,18 2,12 2,08 2,04 1,99 1,97 1,93 1,91 1,88 1,86 1,84 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 3,37 3,29 3,23 3,13 3,05 2,94 2,86 2,78 2,69 2,64 2,57 2,54 2,48 2,44 2,42 21 4,32 3,47 3,07 2,84 2,68 2,57 2,49 2,42 2,37 2,32 2,28 2,25 2,20 2,16 2,10 2,05 2,01 1,96 1,94 1,90 1,88 1,84 1,83 1,81 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 3,31 3,24 3,17 3,07 2,99 2,88 2,80 2,72 2,64 2,58 2,51 2,48 2,42 2,38 2,36 22 4,30 3,44 3,05 2,82 2,66 2,55 2,46 2,40 2,34 2,30 2,26 2,23 2,17 2,13 2,07 2,03 1,98 1,94 1,91 1,87 1,85 1,82 1,80 1,78 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 3,26 3,18 3,12 3,02 2,94 2,83 2,75 2,67 2,58 2,53 2,46 2,42 2,36 2,33 2,31 23 4,28 3,42 3,03 2,80 2,64 2,53 2,44 2,37 2,32 2,27 2,24 2,20 2,15 2,1 1 2,05 2,01 1,96 1,91 1,88 1,84 1,82 1,79 1,77 1,76 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 3,21 3,14 3,07 2,97 2,89 2,78 2,70 2,62 2,54 2,48 2,41 2,37 2,32 2,28 2,26 24 4,26 3,40 3,01 2,78 2,62 2,51 2,42 2,36 2,30 2,25 2,22 2,18 2,13 2,09 2,03 1,98 1,94 1,89 1,86 1,82 1,80 1,77 1,75 1,73 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 3,17 3,09 3,03 2,93 2,85 2,74 2,66 2,58 2,49 2,44 2,37 2,33 2,27 2,24 2,21 25 4,24 3,39 2,99 2,76 2,60 2,49 2,40 2,34 2,28 2,24 2,20 2,16 2,1 1 2,07 2,01 1,96 1,92 1,87 1,84 1,80 1,78 1,75 1,73 1,71 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 3,13 3,06 2,99 2,89 2,81 2,70 2,62 2,54 2,45 2,40 2,33 2,29 2,23 2,19 2,17 26 4,23 3,37 2,98 2,74 2,59 2,47 2,39 2,32 2,27 2,22 2,18 2,15 2,09 2,05 1,99 1,95 1,90 1,85 1,82 1,78 1,76 1,73 1,71 1,69 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 3,09 3,02 2,96 2,86 2,78 2,66 2,58 2,50 2,42 2,36 2,29 2,25 2,19 2,16 2,13 27 4,21 3,35 2,96 2,73 2,57 2,46 2,37 2,31 2,25 2,20 2,17 2,13 2,08 2,04 1,97 1,93 1,88 1,84 1,81 1,76 1,74 1,71 1,69 1,67 7,68 5,49 4,60 4,1 1 3,78 3,56 3,39 3,26 3,15 3,06 2,99 2,93 2,82 2,75 2,63 2,55 2,47 2,38 2,33 2,26 2,22 2,16 2,12 2,10 28 4,20 3,34 2,95 2,71 2,56 2,45 2,36 2,29 2,24 2,19 2,15 2,12 2,06 2,02 1,96 1,91 1,87 1,82 1,79 1,75 1,73 1,69 1,67 1,65 7,64 5,45 4,57 4,07 3,75 3,53 3,36 3,23 3,12 3,03 2,96 2,90 2,79 2,72 2,60 2,52 2,44 2,35 2,30 2,23 2,19 2,13 2,09 2,07 29 4,18 3,33 2,93 2,70 2,55 2,43 2,35 2,28 2,22 2,18 2,14 2,10 2,05 2,01 1,94 1,90 1,85 1,81 1,77 1,73 1,71 1,67 1,65 1,64 7,60 5,42 4,54 4,04 3,73 3,50 3,33 3,20 3,09 3,00 2,93 2,87 2,77 2,69 2,57 2,49 2,41 2,33 2,27 2,20 2,16 2,10 2,06 2,04 30 4,17 3,32 2,92 2,69 2,53 2,42 2,33 2,27 2,21 2,16 2,13 2,09 2,04 1,99 1,93 1,89 1,84 1,79 1,76 1,72 1,70 1,66 1,64 1,62 7,56 5,39 4,51 4,02 3,70 3,47 3,30 3,17 3,07 2,98 2,91 2,84 2,74 2,66 2,55 2,47 2,39 2,30 2,25 2,17 2,13 2,07 2,03 2,01 32 4,15 3,29 2,90 2,67 2,51 2,40 2,31 2,24 2,19 2,14 2,10 2,07 2,01 1,97 1,91 1,86 1,82 1,77 1,74 1,69 1,67 1,63 1,61 1,60 7,50 5,34 4,46 3,97 3,65 3,43 3,26 3,13 3,02 2,93 2,86 2,80 2,70 2,62 2,50 2,42 2,34 2,25 2,20 2,12 2,08 2,02 1,98 1,96 34 4,13 3,28 2,88 2,65 2,49 2,38 2,29 2,23 2,17 2,12 2,08 2,05 1,99 1,95 1,89 1,84 1,80 1,75 1,71 1,67 1,65 1,61 1,59 1,57 7,44 5,29 4,42 3,93 3,61 3,39 3,22 3,09 2,98 2,89 2,82 2,76 2,66 2,58 2,46 2,38 2,30 2,21 2,16 2,08 2,04 1,98 1,94 1,91 62 Т аб лица 3.1. Критиче ские зна чения F для α = 0,05 ( обычный шрифт ) и α = 0,01 ( жирный шрифт ) G. W . Snedecor , W . G. Cochran. Statistical methods. Iowa State University Press, Ames, 1978. ν меж ν вну 123456 789 10 11 12 14 16 20 24 30 40 50 75 10 0 20 0 50 0 ∞ 36 4,1 1 3,26 2,87 2,63 2,48 2,36 2,28 2,21 2,15 2,1 1 2,07 2,03 1,98 1,93 1,87 1,82 1,78 1,73 1,69 1,65 1,62 1,59 1,56 1,55 7,40 5,25 4,38 3,89 3,57 3,35 3,18 3,05 2,95 2,86 2,79 2,72 2,62 2,54 2,43 2,35 2,26 2,18 2,12 2,04 2,00 1,94 1,90 |