Главная страница

Книга в других форматах Приятного чтения! Артуро розенблюту


Скачать 1.87 Mb.
НазваниеКнига в других форматах Приятного чтения! Артуро розенблюту
Дата31.05.2021
Размер1.87 Mb.
Формат файлаpdf
Имя файлаkibernetika_norbert_viner.pdf
ТипКнига
#211925
страница5 из 24
1   2   3   4   5   6   7   8   9   ...   24
Часть I.
Первоначальное издание
1948 г.
Введение
Эта книга представляет итог более чем десятилетних исследований, предпринятых совместно с д-ром Артуро Розенблютом, работавшим тогда в Гарвардской медицинской школе, а ныне перешедшим в Национальный институт кардиологии в Мексике. В то время д- р Розенблют, коллега и сотрудник покойного д-ра Уолтера Б. Кеннона, ежемесячно устраивал дискуссии о научном методе. В этих дискуссиях участвовали главным образом молодые ученые Гарвардской медицинской школы. Мы собирались на обед за круглым столом в Вандербилт-Холле. Беседа была живой и непринужденной. Здесь было неподходящее место для игры в амбицию, да это и не поощрялось. После обеда кто-нибудь из нашей группы или из гостей делал доклады на какую-либо научную тему, причем обычно в этих докладах вопросы методологии ставились на первое или хотя бы на почетное место.
На докладчика обрушивалась резкая критика, благожелательная, но беспощадная. Она была великолепным лекарством от незрелых мыслей, недостаточной самокритичности, излишней самоуверенности и напыщенности. Кто не мог выдержать испытание, не возвращался в нашу среду, но многие из нас, бывших завсегдатаев этих встреч, чувствуют, что эти встречи были постоянным существенным вкладом в наше научное развитие.
На этих собраниях присутствовали не только врачи и ученые-медики. К постоянным и активным участникам наших споров принадлежал д-р Мануэль Сандоваль Вальярта, профессор физики Массачусетсского технологического института, один из самых первых моих [c.43] студентов в те годы, когда я пришел в МТИ после I мировой воины. Как и д-р
Розенблют, д-р Вальярта был мексиканец. Он имел обыкновение приводить на эти встречи своих коллег по институту. На одну из встреч он привел и меня; так я встретился впервые с д-ром Розенблютом. Я давно интересовался методологией науки и в 1911-1913 гг. принимал участие в семинаре по этим вопросам, который вел Джосайя Ройс в Гарвардском университете. Чувствовалось, что на подобных собраниях необходимо присутствие человека, способного критически рассматривать математические вопросы. Поэтому я был активным членом группы до того момента, пока д-р Розенблют не был вызван в Мексику в 1944 г. и пока общий беспорядок, связанный с войной, не положил конец этим собраниям.
В течение многих лет д-р Розенблют разделял со мной убеждение, что самыми плодотворными для развития наук являются области, оставленные в пренебрежении по той
причине, что они были «ничьей территорией» между различными сложившимися науками.
После Лейбница, быть может, уже не было человека, который бы полностью обнимал всю интеллектуальную жизнь своего времени. С той поры наука становится все более делом специалистов, области компетенции которых обнаруживают тенденцию ко все большему сужению. Сто лет тому назад хотя и не было таких ученых, как Лейбниц, но были такие, как
Гаусс, Фарадей, Дарвин.
В настоящее же время лишь немногие ученые могут назвать себя или математиками, или физиками, или биологами, не прибавляя к этому дальнейшего ограничения. Ученый становится теперь топологом, или акустиком, или специалистом по жесткокрылым. Он набит жаргоном своей специальной дисциплины и знает всю литературу по ней и все ее подразделы. Но всякий вопрос, сколько-нибудь выходящий за эти узкие пределы, такой ученый чаще всего будет рассматривать как нечто, относящееся к коллеге, который работает через три комнаты дальше по коридору. Более того, всякий интерес со своей стороны к подобному вопросу он будет считать совершенно непозволительным нарушением чужой тайны.
Специализация дисциплин все время возрастает и [c.44] захватывает все новые области. В результате создается ситуация, похожая на ту, которая возникла, когда в Орегоне одновременно находились и поселенцы из Соединенных Штатов, и англичане, и мексиканцы, и русские, — сложный и запутанный клубок открытий, названий и законов.
Ниже мы увидим, что существуют области научной работы, исследуемые с разных сторон чистой математикой, статистикой, электротехникой и нейрофизиологией. В этих областях каждое понятие получает особое название у каждой группы специалистов, и многие важные исследования проделываются трижды или четырежды. В то же время другие важные исследования задерживаются из-за того, что в одной области не известны результаты, уже давно ставшие классическими в смежной области.
Именно такие пограничные области науки открывают перед надлежаще подготовленным исследователем богатейшие возможности. Но изучение таких областей представляет и наибольшие трудности для обычного метода массового наступления с разделением труда.
Если трудность физиологической проблемы по существу математическая, то десять несведущих в математике физиологов сделают не больше, чем один несведущий в математике физиолог. Очевидно также, что если физиолог, не знающий математики, работает вместе с математиком, не знающим физиологии, то физиолог не в состоянии изложить проблему в выражениях, понятных математику; математик, в свою очередь, не сможет дать совет в понятной для физиолога форме.
Д-р Розенблют всегда настойчиво утверждал, что действенное изучение этих белых пятен на карте науки может быть предпринято только коллективом ученых, каждый из которых, будучи специалистом в своей области, должен быть, однако, основательно знаком с областями науки своих коллег. При этом необходимо, чтобы все привыкли работать совместно, зная склад ума другого, оценивая значение новых идей коллеги, прежде чем эти идеи будут точно сформулированы. От математика не требуется умения провести физиологический эксперимент, но он должен уметь понимать такой эксперимент, уметь подвергнуть его критике и уметь предложить новый эксперимент. От физиолога не требуется умения доказать определенную математическую [c.45] теорему, но физиолог должен быть в состоянии понять ее значение для физиологии и указать математику направление поисков. В течение многих лет мы мечтали об обществе независимых ученых, работающих вместе в одной из этих неисследованных областей науки, и не под началом какого-нибудь высокопоставленного администратора, а объединенных желанием, даже духовной необходимостью, понимать науку как нечто целое и передавать друг другу силу такого понимания.
Мы пришли к согласию по этим вопросам задолго до того, как выбрали область наших совместных исследований и наметили, какое каждый примет в них участие. На наш выбор
существенно повлияла война. Я давно знал, что в случае войны мое участие в ней определялось бы в значительной степени двумя обстоятельствами: моим тесным контактом с программой создания вычислительных машин, проводимой д-ром Ванневаром Бушем, и моей совместной работой с д-ром Юк Винг Ли по синтезу электрических схем.
Действительно, оба обстоятельства сыграли значительную роль. Летом 1940 г. я стал уделять много внимания разработке вычислительных машин для решения дифференциальных уравнений в частных производных. Я давно интересовался этим, и у меня сложилось убеждение, что здесь, в отличие от обыкновенных дифференциальных уравнений, так хорошо решавшихся на дифференциальном анализаторе д-ра Буша, главной является проблема представления функций многих переменных. Я был убежден также, что процесс развертки, применяемый в телевидении, дает ответ на этот вопрос и что в действительности телевидение принесет технике больше пользы именно созданием таких новых процессов, чем само по себе, как особая отрасль.
Было ясно, что всякий процесс развертки должен значительно увеличить количество используемых данных по сравнению с тем, которое встречается в задачах, сводимых к обыкновенным дифференциальным уравнениям. Поэтому для получения приемлемых результатов в приемлемое время необходимо довести до максимума скорость элементарных процессов и добиться, чтобы течение этих процессов не прерывалось существенно более медленными шагами. Необходимо также повысить точность выполнения элементарных процессов [c.46] настолько, чтобы их частое повторение не приводило к накоплению слишком большой ошибки. В результате были сформулированы следующие требования:
1) Центральные суммирующие и множительные устройства должны быть цифровыми, как в обычном арифмометре, а не основываться на измерении, как в дифференциальном анализаторе Буша.
2) Эти устройства, являющиеся по существу переключателями, должны состоять из электронных ламп, а не из зубчатых передач или электромеханических реле. Это необходимо, чтобы обеспечить достаточное быстродействие.
3) В соответствии с принципами, принятыми для ряда существующих машин
Белловских телефонных лабораторий, должна использоваться более экономичная двоичная, а не десятичная система счисления.
4) Последовательность действия должна планироваться самой машиной так, чтобы человек не вмешивался в процесс решения задачи с момента введения исходных данных до снятия окончательных результатов. Все логические операции, необходимые для этого, должна выполнять сама машина.
5) Машина должна содержать устройство для запасания данных. Это устройство должно быстро их записывать, надежно хранить до стирания, быстро считывать, быстро стирать их и немедленно подготавливаться к запасанию нового материала.
Эти рекомендации вместе с предложениями по их реализации были направлены д-ру
Ванневару Бушу для возможного применения их в случае войны. На той стадии подготовки к войне казалось, что они не столь важны, чтобы приступить к немедленной работе над ними.
Тем не менее все эти рекомендации представляют собой идеи, положенные в основу современной сверхбыстрой вычислительной машины. Эти мысли почти носились тогда в воздухе, и я не хочу в данный момент заявлять какие-либо претензии на исключительный приоритет в их формулировке. Все же указанные рекомендации оказались полезными, и я надеюсь, что они имели некоторое влияние на популяризацию этого круга идей среди инженеров. Во всяком случае, как мы увидим в основной части книги, такие идеи интересны в связи с изучением нервной системы. [c.47]
Итак, эта работа была отложена. Хотя она и принесла некоторую пользу, но непосредственно она не привела д-ра Розенблюта и меня к каким-либо проектам. Наше действительное сотрудничество возникло в связи с другой задачей, также имевшей непосредственное отношение к последней войне. В начале войны господство Германии в воздухе и оборонительная позиция Англии сосредоточили внимание многих ученых на
задаче усовершенствования зенитной артиллерии. Уже до войны стало ясно, что возрастающая скорость самолетов опрокинула классические методы управления огнем и что необходимо встроить в прибор управления огнем все вычислительные устройства, обеспечивающие расчеты для выстрела. Эти вычислительные устройства оказались очень сложными вследствие того обстоятельства, что, в отличие от других целей, самолет имеет скорость, сравнимую со скоростью зенитного снаряда. Поэтому необходимо стрелять не прямо в цель, а в некоторую точку, в которой, согласно расчетам, должны по прошествии некоторого времени встретиться самолет и снаряд. Следовательно, мы должны найти какой- нибудь метод предсказания будущего положения самолета.
Простейший метод — продолжить наблюдаемый курс самолета по прямой. Этот метод заслуживает серьезного внимания. Чем больше самолет кружит при полете, чем больше он делает виражей, тем меньше его эффективная скорость, тем меньше времени он имеет для выполнения боевого задания, тем дольше он остается в поражаемом пространстве. При прочих равных условиях самолет будет по возможности лететь по прямой. Однако после разрыва первого снаряда эти прочие условия уже не равны , и пилот, вероятно, начнет выполнять зигзагообразный полет, фигуры высшего пилотажа или другой противозенитный маневр.
Если бы этот маневр зависел только от пилота и задача пилота сводилась бы к разумному использованию своих шансов, такому, какое мы, например, ожидаем от хорошего игрока в покер, то к моменту разрыва снаряда пилот мог бы настолько изменить положение самолета, что шансы на удачное попадание стали бы пренебрежимо малы, если только не применять весьма неэкономного заградительного огня. Но пилот не имеет возможности неограниченного маневра. Во-первых, пилот [c.48] находится в самолете, летящем с чрезвычайно большой скоростью, и всякое внезапное отклонение от курса создаст огромную нагрузку, при которой пилот может потерять сознание, а самолет — развалиться. Далее, управлять самолетом можно только посредством движения рулевых поверхностей, и для перехода в новый режим полета потребуется некоторое время.
Однако перевод рулевых поверхностей в новое положение изменит лишь ускорение самолета, и это изменение ускорения еще должно перейти в изменение скорости и затем в изменение положения, прежде чем оно даст эффект. Наконец, находясь в напряженных условиях боя, летчик едва ли будет способен к очень сложному и ничем не ограниченному сознательному поведению. Вероятнее всего, он будет просто выполнять ту программу действий, которой его ранее обучили.
Все это делало целесообразным разработку проблемы предсказания полета по кривой, независимо от того, насколько благоприятными окажутся результаты для действительного применения прибора управления огнем, использующего такие методы предсказания. Для предсказания будущей криволинейной траектории необходимо выполнить определенные операции над прошлыми наблюдениями траектории. Точный оператор предсказания вообще нельзя осуществить с помощью какой бы то ни было реальной аппаратуры. Но некоторые операторы дают известное приближение и притом допускают реализацию с помощью аппаратуры, которую мы можем построить. Я сказал профессору Массачусетсского технологического института Сэмьюэлу Колдуэллу, что следовало бы испытать эти операторы. Он немедленно предложил мне начать испытания, используя дифференциальный анализатор д-ра Буша как готовую модель требуемых приборов для управления огнем. Мы провели испытания и получили результаты, описанные в основной части книги. Во всяком случае, я оказался работающим над военным проектом, в котором г-н Джулиан X. Бигелоу и я совместно проводили разработку теории предсказания и конструирование устройств, воплощающих ее результаты.
Таким образом, я во второй раз занялся изучением электромеханической системы, предназначенной узурпировать [c.49] специфические функции человека: в первом случае речь шла о выполнении сложных вычислений, во втором — о предсказании будущего. При этом во втором случае мы не могли обойтись без исследования того, как выполняет
некоторые функции человек. Правда, в ряде приборов управления огнем исходные данные для наводки поступают непосредственно с радиолокатора, но обычно огнем управляет живой, а не механический наводчик. Люди: вертикальный наводчик, горизонтальный наводчик или оба вместе — действуют в качестве неотъемлемой части системы управления огнем. Чтобы математически описать их участие в работе управляемой ими машины, необходимо знать их характеристики. Кроме того, их цель — самолет — также управляется человеком, и желательно знать рабочие характеристики такой цели.
Мы с Бигелоу пришли к заключению, что исключительно важным фактором в сознательной деятельности служит явление, которое в технике получило название обратной
связи. Этот вопрос освещен мною весьма подробно в соответствующих главах книги. Здесь я отмечу только одно обстоятельство. Когда мы хотим, чтобы некоторое устройство выполняло заданное движение, разница между заданным и фактическим движением используется как новый входной сигнал, заставляющий регулируемую часть устройства двигаться так, чтобы фактическое движение устройства все более приближалось к заданному.
Например, в одном из типов корабельной рулевой машины поворот штурвала воздействует на L -образное колено, присоединенное к румпелю. Это колено так регулирует клапаны рулевой машины, чтобы румпель двигался в положение, при котором эти клапаны закрыты. Поэтому румпель поворачивается так, чтобы привести другой конец названного колена на серединную, нейтральную линию, и тем самым угловое положение штурвала воспроизводится как угловое положение румпеля. Конечно, любое трение или другая задерживающая сила, тормозящая движение румпеля, будет увеличивать впуск пара в клапаны на одной стороне и уменьшать его на другой, чтобы увеличить вращающий момент, стремящийся привести румпель в требуемое положение. Таким образом, система с обратной связью стремится [c.50] сделать работу рулевой машины относительно независимой от нагрузки.
Но при некоторых условиях, например при наличии задержки во времени и т. п., обратная связь, осуществляемая слишком резко, заставит руль пройти за требуемое положение, а затем обратная связь, действующая в другом направлении, вызовет еще большее отклонение руля от требуемого положения. В результате рулевой механизм будет испытывать сильные колебания, или рысканье, пока совсем не сломается. В таких книгах, как монография Маккола91, можно найти весьма точное описание обратной связи, условий, при которых обратная связь оказывается применимой, а также условий, при которых она отказывает. Обратная связь — это явление, которое мы хорошо понимаем с количественной точки зрения.
Допустим теперь, что я поднимаю карандаш. Чтобы это сделать, я должен привести в движение определенные мышцы. Однако никто, за исключением специалистов-анатомов, не знает, какие это мышцы. Даже среди анатомов лишь немногие, да и то вряд ли, сумеют поднять карандаш посредством сознательного акта последовательного сокращения отдельных мышц. Нами осознается лишь конечная цель — поднять карандаш. Когда мы решили это сделать, наше движение совершается так, что, грубо говоря, степень, в которой карандаш еще не взят, на каждом этапе уменьшается. Все движение мы выполняем почти бессознательно.
Чтобы действие выполнялось таким способом, на каждом этапе движения в нервную систему должны сознательно или бессознательно подаваться сведения о том, насколько положение нашей руки отличается от положения, при котором мы возьмем карандаш. Если мы смотрим на карандаш, то эти сведения могут быть зрительными, хотя бы частично; но обычно они бывают кинестетическими, или, употребляя термин, который сейчас в ходу,
91 McColl L. A Fundamental Theory of Servomechanisms. — New York: Van Nostrand, 1946 (русский перевод:
Маккол Л.Б. Основы теории сервомеханизмов. — М.: ИЛ, 1947 — Ред. ).
проприоцептивными. Если проприоцептивные ощущения отсутствуют и мы не заменим их зрительными или какими-либо другими, то мы не сможем поднять карандаш — состояние, называемое атаксией .
1   2   3   4   5   6   7   8   9   ...   24


написать администратору сайта