Главная страница

Книга в других форматах Приятного чтения! Артуро розенблюту


Скачать 1.87 Mb.
НазваниеКнига в других форматах Приятного чтения! Артуро розенблюту
Дата31.05.2021
Размер1.87 Mb.
Формат файлаpdf
Имя файлаkibernetika_norbert_viner.pdf
ТипКнига
#211925
страница6 из 24
1   2   3   4   5   6   7   8   9   ...   24
[c.51] Атаксия этого типа обычна при той форме сифилиса центральной нервной системы, которая носит название спинной сухотки (tabes dorsalis). При ней кинестетические ощущения, передаваемые спинномозговыми нервами, более или менее утрачиваются.
Но чрезмерная обратная связь, очевидно, должна быть столь же серьезным препятствием для организованной деятельности, как и недостаточная обратная связь.
Принимая во внимание эту возможность, мы с Бигелоу обратились к д-ру Розенблюту с одним специальным вопросом. Существует ли патологическое состояние, при котором больной, пытаясь выполнить сознательное действие, например поднять карандаш, проскакивает мимо цели и совершает не поддающиеся контролю колебания? Д-р Розенблют ответил, что такое состояние существует и хорошо известно. Называется оно интенционным тремором и часто связано с повреждением мозжечка.
Итак, мы нашли весьма существенное подтверждение нашей гипотезы относительно природы сознательной деятельности или, по крайней мере, некоторых видов этой деятельности. Следует отметить, что эта точка зрения идет значительно дальше обычной точки зрения, распространенной среди нейрофизиологов. Центральная нервная система уже не представляется автономным, независимым органом, получающим раздражения от органов чувств и передающим их в мышцы. Наоборот, некоторые характерные виды деятельности центральной нервной системы объяснимы только как круговые процессы, идущие от нервной системы в мышцы и снова возвращающиеся в нервную систему через органы чувств. При этом не важно, являются ли эти органы чувств проприоцепторами или внешними органами чувств. Нам казалось, что такой подход означает новый шаг в изучении того раздела нейрофизиологии, который затрагивает не только элементарные процессы в нервах и синапсах, но и деятельность нервной системы как единого целого.
Мы трое сочли необходимым написать и опубликовать статью, излагающую эту новую точку зрения92. Как [c.52] д-р Розенблют, так и я предвидели, что эта статья может быть только изложением программы большой экспериментальной работы. Мы решили, что если когда-нибудь нам удастся создать институт, занимающийся проблемами связей между разными науками, то эта тема была бы почти идеальным объектом для нашей деятельности.
Что касается техники связи, то для г-на Бигелоу и для меня уже стало очевидным, что техника управления и техника связи неотделимы друг от друга и что они концентрируются не вокруг понятий электротехники, а вокруг более фундаментального понятия сообщения.
При этом не существенно, передается ли сообщение посредством электрических, или механических, или нервных систем. Сообщение представляет собой дискретную или непрерывную последовательность измеримых событий, распределенных во времени, т. е. в точности то, что статистики называют временным рядом.
Предсказание будущего отрезка сообщения производится применением некоторого оператора к прошлому отрезку сообщения, независимо от того, реализуется ли этот оператор алгорифмом математических вычислений или электрическими и механическими устройствами. В связи с этим мы нашли, что идеальные предсказывающие устройства, которые мы сначала рассматривали, подвержены воздействию ошибок двух противоположных видов. Первоначально спроектированный нами предсказывающий прибор можно было сделать таким, чтобы он предугадывал весьма гладкую кривую с любой степенью точности. Однако повышение точности достигалось ценой повышения чувствительности прибора. Чем лучше был прибор для гладких сигналов, тем сильнее он приводился в колебания небольшими нарушениями гладкости и тем продолжительнее были
92 Rosenblueth A., Wiener N., Bigelow J. Behavior, Purpose & Teleology. // Philosophy of Science. — 1943. —
Vol. 10. — P. 18—24 (русский перевод см. в приложении I — Ред .).
такие колебания. Таким образом, хорошая экстраполяция гладкой кривой, по-видимому, требовала применения более точного и чувствительного прибора, чем наилучшее возможное предсказание негладкой кривой; в каждом отдельном случае выбор прибора зависел бы от статистической природы предсказываемого явления. Можно было думать, что эти два вида взаимозависимых ошибок имеют нечто общее с противоречивыми задачами измерения положения и количества [c.53] движения, рассматриваемыми в квантовой механике
Гейзенберга в соответствии с его принципом неопределенности.
После того как мы уяснили, что решение задачи оптимального предсказания можно получить лишь обратившись к статистике предсказываемого временного ряда, было уже легко превратить то, что сперва представлялось трудностью для теории предсказания, в эффективное средство решения задачи предсказания. Приняв определенную статистику для временного ряда, можно найти явное выражение для среднего квадрата ошибки предсказания при данном методе и на данное время вперед. А располагая таким выражением, мы можем свести задачу оптимального предсказания к нахождению определенного оператора, при котором становилась бы минимальной некоторая положительная величина, зависящая от этого оператора. Задачи на минимум такого типа решаются в хорошо развитой отрасли математики — вариационном исчислении, и эта отрасль имеет хорошо развитую методику. Благодаря этой методике мы оказались в состоянии получить в явном виде наилучшее решение задачи предсказания будущего отрезка временного ряда на основе его статистических свойств и, более того, найти физическую реализацию этого решения посредством реальных приборов.
Проделав это, мы увидели, что по крайней мере одна задача технического проектирования приняла совершенно новый вид. Ведь обычно техническое проектирование считается скорее искусством, чем наукой. Сведя задачу такого рода к разысканию определенного минимума, мы поставили дело проектирования на более научную основу.
Нам пришла мысль, что перед нами не изолированный случай и что существует целая область инженерной работы, в которой аналогичные задачи проектирования можно решать методами вариационного исчисления.
Мы обратились к другим аналогичным задачам и решили их этими методами. В числе решенных задач была задача проектирования волновых фильтров. Часто бывает так, что передаваемое сообщение искажают посторонние помехи, так называемый шумовой фон.
Тогда встает задача восстановления посланного сообщения из искаженного сообщения при помощи [c.54] некоторого оператора. При этом может потребоваться восстановление посланного сообщения либо в первоначальном виде, либо с данным упреждением, либо с данным запаздыванием. Выбор оптимального оператора и прибора, его реализующего, определяется статистическими свойствами сообщения и шума, рассматриваемых по отдельности и совместно. Так в проектировании волновых фильтров мы заменили старые методы, носившие эмпирический и довольно-таки случайный характер, методами, допускающими четкое научное обоснование.
Но тем самым мы сделали из проектирования систем связи статистическую науку, раздел статистической механики. И действительно, понятия статистической механики вторгаются во все отрасли науки уже более ста лет. Мы увидим далее, что эта преобладающая роль статистической механики в современной физике имеет самое существенное значение для понимания природы времени. В случае же техники связи значение статистического элемента непосредственно очевидно. Передача информации возможна лишь как передача альтернатив. Если нужно передавать одну-единственную возможность, то лучше всего и легче всего это сделать тем, что не посылать вообще никакого сообщения. Телефон и телеграф могут выполнять свои функции только в том случае, когда передаваемые ими сообщения беспрерывно изменяются, причем эти изменения не определяются полностью прошлой частью сообщений. С другой стороны, эффективное проектирование телефона и телеграфа возможно только при том условии, что изменения передаваемых сообщений подчиняются каким-нибудь статистическим закономерностям.

Чтобы подойти к технике связи с этой стороны, нам пришлось разрабатывать статистическую теорию количества информации. В этой теории за единицу количества информации принимается количество информации, передаваемое при одном выборе между равновероятными альтернативами. Такая мысль возникла почти одновременно у нескольких авторов, в том числе у статистика Р.А. Фишера, у д-ра Шеннона из Белловских телефонных лабораторий и у автора настоящей книги93. При этом Фишер исходил из классической [c.55] статистической теории, Шеннон — из проблемы кодирования информации, автор настоящей книги — из проблемы сообщения и шумов в электрических фильтрах. Следует, однако, отметить, что некоторые мои изыскания в этом направлении связаны с более ранней работой
Колмогорова94 в России, хотя значительная часть моей работы была сделана до того, как я обратился к трудам русской школы.
Понятие количества информации совершенно естественно связывается с классическим понятием статистической механики — понятием энтропии. Как количество информации в системе есть мера организованности системы, точно так же энтропия системы есть мера дезорганизованности системы; одно равно другому, взятому с обратным знаком. Эта точка зрения приводит нас к ряду рассуждений относительно второго закона термодинамики и к изучению возможности так называемых «демонов» Максвелла. Вопросы такого рода возникают совершенно независимо при изучении энзимов и других катализаторов, и их рассмотрение существенно для правильного понимания таких основных свойств живой материи, как обмен веществ и размножение. Третье фундаментальное свойство жизни — свойство раздражимости — относится к области теории связи и попадает в группу идей, которые мы только что разбирали95.
Таким образом, четыре года назад группа ученых, объединенных вокруг д-ра
Розенблюта и меня, уже понимала принципиальное единство ряда задач, в центре которых находились вопросы связи, управления и статистической механики, и притом как в машине, так и в живой ткани. Но наша работа затруднялась отсутствием единства в литературе, где эти задачи трактовались, и отсутствием общей терминологии или хотя бы единого названия для этой области. После продолжительного обсуждения мы пришли к выводу, что вся [c.56] существующая терминология так или иначе слишком однобока и не может способствовать в надлежащей степени развитию этой области. По примеру других ученых, нам пришлось придумать хотя бы одно искусственное неогреческое выражение для устранения пробела.
Было решено назвать всю теорию управления и связи в машинах и живых организмах
кибернетикой,
от греческого
κυβερνήτησ — «кормчий»96.
Выбирая этот термин, мы тем самым признавали, что первой значительной работой по механизмам с обратной связью была статья о регуляторах, опубликованная Кларком
Максвеллом в 1868 г.97, и что слово «governor», которым Максвелл обозначал регулятор,
93 См.: Фишер Р.А. Статистические методы для исследователей. — М.: Госстатиздат, 1961; Шеннон К.Э.
Работы по теории информации и кибернетики. — М.: ИЛ, 1963. — Прим. ред.
94 Колмогоров А.Н. Интерполирование и экстраполирование стационарных случайных последовательностей.
// Известия АН СССР . — Сер. мат. — 1941. — № 5. — С. 3—14.
95 Schrödinger E. What is Life? — Cambridge, England: Cambridge University Press, 1945 (русский перевод: Шредингер Э. Что такое жизнь с точки зрения физики? — М.: ИЛ, 1947. — Ред. ).
96 Собственно, Винер употребляет это слово в латинизированной форме «cybernetics», т. е. «цибернетика».
См. стр. 37. — Прим. ред.
97 Maxwell J.С. On Governors. // Proc. Roy. Soc . (London). — 1868. — Vol. 16. — P. 270—283 (русский перевод: Максвелл Д.К. О регуляторах. // Максвелл Д.К., Вышнеградский И.А., Стодол А. Теория автоматического регулирования. — М.: Изд-во АН СССР, 1949. С. 9—29 — Ред. ).
происходит от латинского искажения слова
«κυβερνήτησ». Мы хотели также отметить, что судовые рулевые машины были действительно одними из самых первых хорошо разработанных устройств с обратной связью98.
Несмотря на то, что термин «кибернетика» появился только летом 1947 г., мы сочли удобным использовать его в ссылках, относящихся к более ранним периодам развития этой области науки. Приблизительно с 1942 г. развитие кибернетики проходило по нескольким направлениям. Сначала идеи совместной статьи Бигелоу, Розенблюта и Винера были изложены д-ром Розенблютом [c.57] на совещании, проведенном фондом Джосайи Мейси в
Нью-Йорке в 1942 г. Совещание было посвящено проблемам центрального торможения в нервной системе. На совещании присутствовал д-р Уоррен Мак-Каллох из Медицинской школы Иллинойсского университета, уже давно поддерживавший связь с д-ром
Розенблютом и со мною и интересовавшийся изучением организации коры головного мозга.
Примерно в это же время на сцену выступает фактор, который неоднократно появляется в истории кибернетики, — влияние математической логики. Если бы мне пришлось выбирать в анналах истории наук святого — покровителя кибернетики, то я выбрал бы Лейбница. Философия Лейбница концентрируется вокруг двух основных идей, тесно связанных между собой: идеи универсальной символики и идеи логического исчисления.
Из этих двух идей возникли современный математический анализ и современная символическая логика. И как в арифметическом исчислении была заложена возможность развития его механизации от абака и арифмометра до современных сверхбыстрых вычислительных машин, так в calculus ratiocinator99 Лейбница содержится в зародыше machina rationatrix — думающая машина. Сам Лейбниц, подобно своему предшественнику
Паскалю, интересовался созданием вычислительных машин в металле. Поэтому совсем неудивительно, что тот же самый умственный толчок, который привел к развитию математической логики, одновременно привел к гипотетической или действительной механизации процессов мышления.
Всякое математическое доказательство, за которым мы можем следить, выразимо конечным числом символов. Эти символы, правда, могут быть связаны с понятием бесконечности, но связь эта такова, что ее можно установить за конечное число шагов. Так, когда в случае математической индукции мы доказываем теорему, зависящую от параметра n
, мы доказываем ее сначала для n =0 и затем устанавливаем, что случай, когда параметр имеет значение n +1, вытекает из случая, когда параметр имеет значение n . Тем самым мы убеждаемся [c.58] в правильности теоремы для всех положительных значений параметра n .
Более того, число правил действия в нашем дедуктивном механизме должно быть конечным, даже если оно кажется неограниченным из-за ссылки на понятие бесконечности. Ведь и само понятие бесконечности выразимо в конечных терминах. Короче говоря, как номиналистам
(Гильберт), так и интуиционистам (Вейль) стало совершенно очевидно, что развитие той или
98
Как оказалось, слово
«кибернетика»
(κυβερνητική) не является неологизмом. Оно встречается довольно часто у Платона, где обозначает искусство управлять кораблем, искусство кормчего, а в переносном смысле — также искусство управления людьми. В 1834 г. знаменитый французский физик А.-М.
Ампер, занимавшийся также вопросами классификации наук, назвал, по примеру древних, кибернетикой
(cybernetique) науку об управлении государством. В таком значении это слово вошло в ряд известных словарей
XIX в. Ампер относил кибернетику вместе с «этнодицеей» (наукой о правах народов), дипломатией и «теорией власти» к политическим наукам, причем кибернетика и теория власти составляли у него «политику в собственном смысле слова» (см. Ampère A.— М. Essai sur la philosophie des sciences. — 2nd partie. — Paris:
Bachelier, 1843. Chapitre IV. § IV. P. 140—142). — Прим. ред.
99 Исчисление умозаключений. — Прим. ред.
иной математико-логической теории подчиняется ограничениям того же рода, что и работа вычислительной машины. Как мы увидим позже, можно даже интерпретировать с этой точки зрения парадоксы Кантора и Рассела.
Я сам в прошлом ученик Рассела и многим обязан его влиянию. Д-р Шеннон взял как тему своей докторской диссертации в Массачусетсском технологическом институте применение методов классической булевой алгебры классов к изучению переключательных систем в электротехнике100. Тьюринг был, пожалуй, первым среди ученых, исследовавших логические возможности машин с помощью мысленных экспериментов. Во время войны он работал для английского правительства в области электроники. В настоящее время он возглавляет программу по созданию вычислительных машин современного образца, принятую Национальной физической лабораторией в Теддингтоне.
Другим молодым ученым, перешедшим из математической логики в кибернетику, был
Уолтер Питтс. Он был учеником Карнапа в Чикаго и был связан с проф. Рашевским и его школой биофизиков. Заметим попутно, что эта последняя группа сделала очень много для того, чтобы направить внимание ученых-математиков на возможности биологических наук.
Правда, некоторым из нас кажется, что она находится под слишком большим влиянием задач об энергии и потенциалах и методов классической физики, чтобы наилучшим образом решать задачи по изучению систем, подобных нервной системе, которые весьма далеки от энергетической замкнутости. [c.59]
Г-н Питтс весьма удачно попал под влияние Мак-Каллоха; они вместе начали работать над проблемами, связанными с соединением нервных волокон синапсами в системы, обладающие заданными общими свойствами. Независимо от Шеннона они использовали аппарат математической логики для решения проблем, являющихся прежде всего переключательными проблемами. Мак-Каллох и Питтс ввели принципы, остававшиеся в тени в ранней работе Шеннона, хотя и вытекающие, несомненно, из идей Тьюринга: использование времени как параметра, рассмотрение сетей, содержащих циклы, и рассмотрение синаптических и других задержек101.
Летом 1943 г. я встретил д-ра Дж. Леттвина из Бостонской городской больницы, весьма интересовавшегося вопросами, связанными с нервными механизмами. Он был близким другом г-на Питтса и познакомил меня с его работой102. Он убедил Питтса приехать в
Бостон и встретиться с д-ром Розенблютом и со мной. Мы с радостью пригласили его в нашу группу. Г-н Питтс перешел в Массачусетсский технологический институт осенью 1943 г., чтобы работать вместе со мной и чтобы углубить свою математическую подготовку для исследований в этой науке — кибернетике, к тому времени уже родившейся, но еще не окрещенной.
Г-н Питтс был тогда основательно знаком с математической логикой и нейрофизиологией, но не имел случая сколько-нибудь близко соприкасаться с техникой. В частности, он не был знаком с работой д-ра Шеннона и недостаточно ясно представлял себе возможности электроники. Он очень заинтересовался, когда я показал ему образцы современных вакуумных ламп и объяснил, что они являются идеальным средством для
100 См.: Шеннон К.Э. Указ. соч. Булева алгебра классов — логическое исчисление, названное по имени известного английского математика Джорджа Буля (1815—1864), который считается основателем математической логики. — Прим. ред.
101 Turing A.M. On Computable Numbers, with an Application to the Entscheidungsproblem. // Proc. London
Math. Soc. — Ser. 2. — 1936. — Vol. 42. — P. 230—265.
102 McCulloch W.S., Pitts W. A logical calculus of the ideas immanent in nervous activity. // Bull. Math. Biophys.
— 1943. — Vol. 5. — P. 115—133 (русский перевод: Мак-Каллох У.С., Питтс В. Логическое исчисление идей, относящихся к нервной активности. // Автоматы. / Пер. под ред. Ляпунова А.А. — М.: ИЛ, 1956. С. 362—384.
Ред. ).
реализации в металле эквивалентов рассматриваемых им нейронных сетей и систем. С этого времени нам стало
1   2   3   4   5   6   7   8   9   ...   24


написать администратору сайта