Реферат ликвидация катастрофических поглощений. Комплекс исследований зон поглощения, их обобщенная классификация
Скачать 1.13 Mb.
|
2. Технология изоляции зон полного (катастрофического) поглощения бурового раствора высокоструктурированными тампонажными смесями (твердеющими и нетвердеющими) на базе автобетонокомплекса2.1 Традиционные методы ликвидации поглощений бурового раствораВ случае высокоинтенсивного поглощения возможно бурение без выхода бурового раствора на поверхность. Оно целесообразно в твердых породах (известняках, доломитах, песчаниках и т. п.). После вскрытия всей зоны поглощения бурение немедленно прекращают. Далее проводят заливки ГЦП или БСС до полной ликвидации поглощения. При бурении без выхода бурового раствора разбуриваемый шлам поднимается с забоя и уходит в каналы поглощения вместе с буровым раствором. Во избежание прихвата бурильной колонны необходимо тщательно следить за стрелкой индикатора веса. Экономически целесообразно бурить без выхода циркуляции только при использовании воды в качестве бурового раствора. Для ликвидации интенсивных поглощений (более 200 м3/ч) прежде всего снижают их интенсивность путем намыва в зону поглощения песка или шлама выбуренной породы или забрасывания и продавки инертных материалов (глины, торфа, соломы и т. п.). После намыва песка или забрасывания зоны поглощения инертными материалами ее заливают цементным раствором. После затвердения цемента скважину прорабатывают и затем начинают дальнейшее углубление. Для ликвидации высокоинтенсивных поглощений бурового раствора, приуроченных к большим трещинам и кавернам, во ВНИИБТ были разработаны перекрывающие устройства. Перекрывающее устройство представляет собой эластичную сетчатую оболочку (капроновая, нейлоновая, капроновый эластик, металлическая специального плетения и др.). Установленная в интервале поглощения сетчатая оболочка под действием закачиваемой тампонажной смеси с наполнителем расширяется и заполняет трещины и каверны. Сетчатая оболочка расширяется вследствие закупорки ее ячеек наполнителем, находящимся в тампонажной смеси. При твердении тампонажная смесь связывает оболочку с породой. Известны и другие способы ликвидации высокоинтенсивных поглощений: спуск «летучки» (кассеты), замораживание зоны поглощения, изоляция зон поглощения с помощью взрыва и др. Но все они весьма трудоемки, не всегда дают положительный результат и поэтому применяются в буровой практике редко. Крайняя мера борьбы с поглощением бурового раствора - спуск промежуточной обсадной колонны. Рассмотрим подробнее некоторые из них. 2.2 Высокоструктурированные тампонажные смесиПо современным представлениям полное (катастрофическое) поглощение бурового раствора возникает в основном при разбуривании пластов, обладающих развитой естественной кавернозностью и трещиноватостью, которая образует разветвленную сеть наклонных и вертикальных трещин большого простирания. Гидроразрыв пласта также может быть причиной катастрофического поглощения бурового раствора. В процессе гидроразрыва пластов образуется сеть искусственных трещин, причем, значительная часть всего объема трещин приходится на долю вертикальных трещин, длина, высота и ширина (раскрытость) которых могут достигать значительных размеров (длина от 50 до 100 м, раскрытость от 1 - 2 до 80 - 100 мм и более). Причем, трещины в интервале зоны поглощения по величине могут распределяться произвольно, одновременно могут быть представлены трещины крупные, средние и мелкие. Решить задачу изоляции таких зон катастрофического поглощения методом простого заполнения таких трещин тампонажными материалами технически и экономически не рационально. Исходя из этих представлений о природе поглощений, институтом «Гипровостокнефть» предложена технология по ликвидации катастрофических поглощений бурового раствора, в основу которой положена концепция создания надежного изолирующего экрана в приствольной части поглощающего пласта: путем удержания тампонажной смеси от растекания под действием гравитационных сил, межпластовых перетоков и других гидродинамических воздействий при выполнении различных технологических операций; путем формирования каркаса намывом твердых и плотных, а также волокнистых наполнителей с последующей укрепляющей заливкой твердеющими смесями. Для реализации предложенной концепции изоляции катастрофических поглощений институтом разработано два типа высокоструктурированных тампонажных смесей: смеси с комплексными свойствами (нетвердеющие и твердеющие); предельно структурированные смеси для намыва твердых и плотных наполнителей, а также волокнистых материалов. Высокоструктурированные тампонажные смеси получают путем добавки в жидкость-носитель наполнителей или, как правило, композиции наполнителей, причем, один из компонентов выполняет роль регулирующей добавки по плотности и подвижности. В качестве жидкостей-носителей применяют буровой, цементный или гельцементный растворы. Содержание наполнителей в жидкости-носителе определяют в % массовых к объему жидкости-носителя. Подвижность смеси замеряют пластометром (конусом погружения) в сантиметрах. В основу проектирования высокоструктурированных тампонажных смесей положен принцип удержания смеси от растекания по каналам поглощающего пласта под действием гравитационных сил и предотвращения разбавления пластовой жидкостью. Поставленная цель достигается путем придания тампонажной смеси в процессе проектирования и приготовления одновременно ряда заданных технологических свойств: заданное предельное значение начальной подвижности; плотность смеси, близкую к плотности жидкости в поглощающем пласте (для условий Самарской области 1120 - 1170 кг/м3); повышенная кольматирующая способность; стабильность параметров и однородность. Для определения параметров тампонажной смеси (на базе данной композиции наполнителей) проводят лабораторные эксперименты с целью получения трех графиков зависимостей (рис. 1): изменение подвижности тампонажной смеси от содержания наполнителей (рис. 1а); изменение плотности тампонажной смеси от содержания наполнителей (рис. 1б); изменение кинетики структурообразования для различных начальных подвижностей (рис. 1в). На рис. 1 приведены кривые для следующей композиции наполнителей: жидкость-носитель: гельцементный раствор гц = 1535 кг/м3; композиция наполнителей: 8 % (мас.) кордного волокна + 8 % (мас.) резиновой крошки + % (мас.) дробленки бамперной (остальное). Рис. 1 Регулирование подвижности смеси осуществляется выбором типа наполнителя и его массовым содержанием. Здесь основным регулирующим компонентом является дробленка бамперная. Регулирование плотности смеси осуществляется выбором типа жидкости-носителя, типа наполнителя и его массовым содержанием. Плотность тампонажной смеси с комплексными свойствами выбирают близкой к плотности пластовой жидкости. Содержание наполнителей в смеси выбирают из диапазона от 6 % до 100 % (мас.) и более с целью получения необходимой начальной подвижности со значением от 5 до 25 см. Регулирование кольматирующей способности тампонажной смеси производят выбором типа и фракционного состава наполнителей. Размер фракций может изменяться от 0,1 до 40 мм. Методику выбора необходимых параметров тампонажной смеси покажем на примере смеси, состоящей из гельцементного раствора и вышеприведенной композиции наполнителей (8 % (мас.) кордного волокна плюс 8 % (мас.) резиновой крошки плюс % (мас.) регулирующая добавка - дробленка бамперная, которая вводится до получения предельной подвижности, равной 4 см). Подвижность 4 см - это предел прокачиваемости автобетононасоса по бетону. Для рассматриваемой композиции инертных наполнителей, согласно рис. 1в, при заданном времени проведения операции по приготовлению и закачке смесей в зону поглощения ( tз) выбираем начальную подвижность тампонажной смеси (Пн). В конкретном примере tз = 4,5 ч, Пн = 13 см. Указанная смесь с начальной подвижностью, равной 13 см через 4,5 ч, т.е. в момент окончания продавки смеси в поглощающий пласт, приобретет подвижность с предельным значением, равным 4 см. Далее на рис. 1а по значению Пн = 13 см определяют общее содержание наполнителей в смеси, которое составляет 30 % (мас.), в т.ч. 14 % (мас.) будет приходиться на дробленку бамперную. По рис. 1б определяется плотность смеси, содержащей 30 % (мас.) наполнителей, которая составляет 1475 кг/м3. Совместное рассмотрение графиков Рис. 1а, 1б, 1в позволяет оперативно принимать решения в зависимости от конкретных условий на скважине по выбору плотности и подвижности тампонажной смеси, представленной данной композицией инертных наполнителей. Максимальную крупность частиц наполнителя с точки зрения наибольшего кольматационного эффекта выбирают на основании сведений о характере поглощающего пласта, результатов пробных закачек в зону поглощения тампонажных смесей с различной крупностью частиц гранулярных наполнителей. Фракционный состав наполнителей устанавливают также из условия прокачиваемости тампонажной смеси по каналу доставки (линия обвязки автобетононасосов, промывочная головка, бурильные трубы, открытый конец или пакер). С этой точки зрения соотношение между диаметром канала (в наиболее суженной части) и наибольшим размером зерен наполнителей принимается 3 : 1. Количество зерен наибольших размеров не должно превышать 15 % по массе. Так, допускаемая предельная крупность зерен наполнителя составит при прокачке: по буровому шлангу с внутренним диаметром 76 мм - 35 мм; по бурильным трубам диаметром 127 мм (с внутренним диаметром 107 мм) - 30 - 35 мм. Продолжительность приготовления тампонажной смеси устанавливается из условия получения однородной смеси по параметру подвижность. Рецептуры высокоструктурированных тампонажных смесей приведены в таблице 3а. Высокоструктурированные тампонажные смеси (нетвердеющие и твердеющие) с подвижностью ниже 12 см названы «малоподвижными» смесями и предназначены для ликвидации зон поглощения III категории. Рецептуры малоподвижных тампонажных смесей приведены в таблице 3б. Таблица 3а. Высокоструктурированные тампонажные смеси
Таблица 3б. Малоподвижные тампонажные смеси
Для создания дополнительного удерживающего эффекта и оттеснения пластовой жидкости могут быть использованы буферные жидкости - вязкоупругие смеси, которые подаются в зону поглощения перед тампонажными смесями. Рецептуры вязкоупругих смесей приведены в таблице 3в. Таблица 3в. Вязкоупругие смеси
|