Главная страница
Навигация по странице:

  • Уменьшение тока в рельсах и в земле

  • Уменьшение сопротивления рельсового пути

  • Регулируемый путевой источник тока (ПИТ)

  • Воздушные и кабельные однопроводные линии с рабочими заземлителями, подземные провода.

  • Изолированные от земли провода воздушных линий

  • Возврат к оглавлению Лекция 8. РАСЧЕТЫ ВЛИЯЮЩИХ ТОКОВ КОНТАКТНОЙ СЕТИ ПРИ КОРОТКОМ ЗАМЫКАНИИ И ВЫНУЖДЕННОМ РЕЖИМЕ

  • Электромагнитная совместимость устройств. Конспект лекций для студентов специальности "Электроснабжение железнодорожного транспорта"


    Скачать 1.04 Mb.
    НазваниеКонспект лекций для студентов специальности "Электроснабжение железнодорожного транспорта"
    АнкорЭлектромагнитная совместимость устройств.doc
    Дата18.02.2018
    Размер1.04 Mb.
    Формат файлаdoc
    Имя файлаЭлектромагнитная совместимость устройств.doc
    ТипКонспект лекций
    #15676
    страница4 из 8
    1   2   3   4   5   6   7   8

    Возврат к оглавлению

    Лекция 7.

    ЗАЩИТА ОТ ГАЛЬВАНИЧЕСКОГО ВЛИЯНИЯ. СУММИРОВАНИЕ НАПРЯЖЕНИЙ РАЗНЫХ ВИДОВ ВЛИЯНИЯ

    7.1. Мероприятия по защите подземных сооружений от блуждающих токов

    Применяемые защитные мероприятия подразделяют на две группы: во-первых, это снижение величин блуждающих токов, во-вторых, это защита непосредственно подземных сооружений.

    К первой группе относятся следующие мероприятия.

    1. Уменьшение тока в рельсах и в земле. При системе распределенного питания или при сокращенных расстояниях между подстанциями снижается утечка тока с рельсов в землю. В последнем варианте возможно появление уравнительных токов, которые могут даже ухудшить положение.

    2. Уменьшение сопротивления рельсового пути. Это мероприятие требует надежного соединения между стыками.

    3. Увеличение переходного сопротивления рельсы-земля. Достигается путем пропитки шпал непроводящими составами, подсыпкой щебеночного балласта и устройством дренажа для осушения полотна.

    4. Регулируемый путевой источник тока (ПИТ). ПИТ представляет собой вольтодобавочное устройство, включаемое в рассечку рельсов (рис. 20а). Его питание осуществляется от сети переменного тока, а выходное напряжение управляется током в контактной сети, при этом ток выпрямителя регулируется примерно равным току в контактной сети. ПИТ создает дополнительное напряжение (рис. 20б) и заставляет ток нагрузки течь по рельсам (рис. 20в). Увеличение напряжения на нагрузке при этом незначительно, а потребляемая им мощность сравнительно невелика.

    Ко второй группе относятся следующие мероприятия по защите подземных сооружений.

    1. Катодная защита. Суть катодной защиты заключается в искусственном создании на подземном сооружении в его анодной зоне катодной зоны от дополнительного источника напряжения (рис. 21,а). Очевидно, при этом будет интенсивно разрушаться дополнительное заземление катодной защиты. В катодных зонах подземного сооружения потенциал станет еще более отрицательным, что может привести к повреждению краски подземного сооружения из-за интенсивного выделения водорода между металлом и слоем краски. По этим причинам максимальный потенциал катодной защиты ограничивают.

    При установке катодной защиты учитывают возможные изменения потенциалов соседних сооружений и усиление их коррозии.



    Рис. 20

    2. Протекторная защита. Присоединение к подземному сооружению металла с более низким электрохимическим потенциалом создает источник ЭДС с анодом на присоединенном металле. Эта ЭДС, однако, мала и защита применима лишь при небольших потенциалах (обычная почвенная коррозия).



    Рис. 21

    3. Дренажная защита. Анодная зона подземного сооружения при такой защите соединяется с отрицательной шиной подстанции или с рельсами (рис. 21б). Происходит "осушение" электрических зарядов анодной зоны - дренаж. Резистор Rд позволяет регулировать потенциал подземного сооружения, а диод предотвращает протекание тока в обратном направлении при случайном повышении потенциала рельсов в точке соединения. Дренажная защита усиливает отток с рельсов у нагрузки и коррозию рельсов.

    На рис. 21в показана схема усиленного дренажа, аналогичная катодной защите.

    7.2. Суммирование напряжений разных видов влияния

    С появлением целых трех разных видов влияния - электрического, магнитного и гальванического - возникает вопрос о том, как поступать при нескольких влияниях одновременно. Собственно, вопрос сводится к суммированию магнитного и гальванического влияний при заземленных объектах (когда электрическое влияние практически отсутствует) и к суммированию магнитного и электрического влияний для изолированных от земли линий. Исходным пунктом суммирования является возможность просто складывать потенциалы от разных источников в соответствии с законом сохранения энергии или в соответствии с наложением нескольких токов. Очевидно, что в каждом случае необходимо сначала аккуратно определиться со слагаемыми и только затем складывать их.

    1. Воздушные и кабельные однопроводные линии с рабочими заземлителями, подземные провода. Напряжение магнитного влияния сдвинуто на угол 90 градусов относительно влияющего тока (при синусоидальных токах и напряжениях), а гальваническое влияние находится в фазе с током контактной сети. Из-за отсутствия электрического влияния суммарное напряжение будет равно

    (20)

    2. Изолированные от земли провода воздушных линий. Эти провода подвержены как электрическому, так и магнитному влияниям. Суммирование необходимо проводить с учетом разностей фаз напряжений Uэ и Uм . В соответствии с рис. 10 и формулой (17) напряжения магнитного влияния в начале UМ0 и в конце UМ l определяются выражениями такого вида:

    .

    Суммирование этих напряжений с напряжением электрического влияния, по фазе совпадающего с напряжением контактной сети, показано на рис. 22 с учетом запаздывания тока контактной сети от напряжения на угол около 37о и расположения векторов UМ0 и UМ l перпендикулярно току.



    Рис. 22

    Как видно из рис. 22, величины UМ0Э и UМ lЭ не одинаковы по величине и по фазе. В соответствии с теоремой косинусов суммарное напряжение в начале и в конце линии определится выражением

    ,(21)

    где Uм - полное напряжение магнитного влияния, равное величине ЭДС по выражению (17). "Правила защиты..." [1] допускают упрощенный расчет с суммированием напряжений в квадратурах (предполагающий угол 90о между векторами):



    Рис. 23

    (22)

    Формула (22) справедлива для случая, когда вся смежная линия находится в зоне влияния. Если же смежный провод выходит за пределы зоны влияния и его длина l больше длины участка в зоне влияния (длины сближения) lэ, то расчет немного усложняется. Схема соответствующего случая изображена на рис. 23а. На рис. 23б приведена схема замещения для расчета напряжений, возникающих в начале линии для такого случая. Схема соответствует предложенному в разделе 2.1 варианту (по рис. 10), в котором пренебрегается малыми падениями напряжений на индуктивностях проводов. Эта схема составлена тремя ячейками, последняя из которых не содержит источника ЭДС магнитного влияния. Величины емкостей на землю пропорциональны длинам соответствующих отрезков. Расчет напряжения на левом конденсаторе схемы не составляет трудностей, и это напряжение равно Uмlс/l, где Uм=2E1, а lс - расстояние от середины зоны влияния до конца смежного провода. Uм при этом определяется эффективной длиной lэ. Формула (22) для расчета суммарного напряжения в начале смежного провода теперь будет выглядеть таким образом:

    (22)

    РЕЗЮМЕ

    Различные методы защиты от гальванического влияния подразделяются на две группы, первая из которых сводится к снижению блуждающих токов в земле, а вторая - к непосредственной защите подземных сооружений.

    На смежные линии возможно одновременное воздействие двух видов влияний: электрического и магнитного или гальванического и магнитного. В обоих случаях напряжения влияний можно суммировать в квадратурах.

    Возврат к оглавлению

    Лекция 8.

    РАСЧЕТЫ ВЛИЯЮЩИХ ТОКОВ КОНТАКТНОЙ СЕТИ ПРИ КОРОТКОМ ЗАМЫКАНИИ И ВЫНУЖДЕННОМ РЕЖИМЕ

    8.1. Общие положения

    Для расчета наводимого напряжения за счет магнитного влияния необходимо определиться с влияющим током контактной сети. Сложившиеся подходы для определения тока и рассмотрены в этом разделе.

    С опасными влияниями приходится иметь дело в основном в случае тяговой сети переменного тока 1х25 кВ, когда наводимые напряжения на порядок выше, чем для тяговой сети постоянного тока. Тяговые сети 2х25 кВ по степени опасности занимают промежуточное положение, но они отличаются усложненным расчетом наводимых напряжений, который лучше всего проводить с применением вычислительной техники. В данном случае речь пойдет о тяговой сети 1х25 кВ.

    С точки зрения безопасности работы принято рассматривать наихудший возможный вариант, при котором наводимые напряжения будут наибольшими, и предпринимать защитные меры в его отношении.



    Рис. 24

    В этом плане наиболее опасными являются два следующих режима в тяговой сети:

    ·короткое замыкание, при котором протекают наибольшие токи; в качестве расчетного рассматривают случай, когда создаются максимальные напряжения, что соответствует короткому замыканию на краю зоны влияния, как на рис. 24а; при коротком замыкании в середине зоны влияния наводимые напряжения меньше из-за меньшей длины сближения, да еще возможна компенсация при протекании тока короткого замыкания со стороны второй подстанции;

    ·вынужденный режим, при котором одна из тяговых подстанций, питающих межподстанционную зону, отключается, токи протекают по большей длине (по сравнению с нормальным режимом, рис. 24б) и в одном направлении (рис. 24в).

    8.2. Расчет влияющего тока при коротком замыкании в тяговой сети

    В наиболее распространенном случае питания тяговой сети от трехфазного трансформатора по схеме "звезда-треугольник" короткое замыкание в тяговой сети относится к двухфазному короткому замыканию и рассчитывается с удвоением сопротивлений прямой последовательности для ЛЭП и трансформатора:



    где 2Zлэп=2jXлэп - сопротивление ЛЭП без учета активного сопротивления, приведенное к напряжению 27.5 кВ, , Sкз - мощность трехфазного короткого замыкания на шинах подстанции;

    2Zт=2jXт - сопротивление тягового трансформатора без учета активного сопротивления, приведенное к 27.5 кВ, , uк - напряжение короткого замыкания трансформатора в процентах, Sн - номинальная мощность трансформатора;

    Zкс=(R0+jX0) lкз - сопротивление   тяговой сети от подстанции до точки короткого замыкания.

    Таким образом, ток короткого замыкания можно рассчитать по величине по формуле (24)

    . (24)

    8.3. Расчет влияющего тока при вынужденном режиме

    В основе расчета лежит ряд довольно серьезных предположений, позволяющих рассчитать возможные токи наиболее неблагоприятного случая. Предположения эти таковы.

    1. Максимально возможный ток определяется из максимально допустимой потери напряжения ΔUкс-макс вдоль тяговой сети в предположении консольного питания межподстанционной зоны, когда еще возможно обеспечить пропуск поездов.

    2. Количество поездов m считается заданным, эти поезда распределены равномерно вдоль межподстанционной зоны и все поезда потребляют одинаковый по величине и фазе ток I1 (то есть малыми фазовыми сдвигами между разными токами пренебрегают).

    3. Неравномерный (ступенчатый) ток контактной сети заменяется на эквивалентный влияющий ток Iэкв, такой ток, который одинаков на всей длине сближения и индуктирует в проводе такое же напряжение, как и исходный ступенчатый ток.

    Определимся вначале с током в контактной сети на основании первых двух предположений, а затем перейдем к эквивалентному току.

    На рис. 25 показана расчетная схема, удовлетворяющая предположению 2, а также распределение тока по контактной сети. Падение напряжения в контактной сети равно

    ,

     - сопротивление тяговой сети между соседними поездами. При отсчете фазы от напряжения на токоприемнике  - ток плеча подстанции. Отсюда

    .



    Рис. 25

    Как это видно из векторной диаграммы рис. 25, потеря напряжения на тяговой сети до последнего электровоза определяется с некоторым приближением (при небольшом отличии напряжений на шинах подстанции и на последнем электровозе) вещественной частью падения напряжения

    ,

    откуда результирующий ток при максимальной потере напряжения определится выражением (25)

    . (25)

    Эквивалентный влияющий ток определим, исходя из некоторой похожести распределения тока по рис. 25 на треугольник. Наводимое напряжение магнитного влияния определяется площадью под этим ступенчатым треугольником, которая равна площади под пунктирной линией 1 (это равенство немного нарушается, если начало и конец смежного провода располагаются не по серединам ступеней или не по их концам). Пунктирная линия 2 спущена относительно линии 1 на величину I1 и составляет с осями координат треугольник, в котором можно определить токи I' и I" на краях трапеции, площадь которой (с корректировкой на I1) будет определять наводимое напряжение при длине сближения меньшей, чем длина межподстанционной зоны. Iэкв в таком случае будет средним между I' и I", увеличенным на I1:

    .

    Токи I' и I" определяются по рис. 25 из подобных треугольников:



    и формула для подсчета эквивалентного влияющего тока выглядит так:



    или

    ,

    где Km - коэффициент, характеризующий уменьшение эквивалентного тока по сравнению с результирующим в зависимости от количества поездов m, одновременно находящихся в пределах расчетного плеча питания при вынужденном режиме.

    Максимальная потеря напряжения в тяговой сети между подстанцией и наиболее удаленным от нее электровозом принимается равной 8500 В при длине межподстанционной зоны lт более 30 км (19 кВ на токоприемнике наиболее удаленного электровоза) и 5500 В при lт от 15 до 30 км включительно (при этом потребляемая от подстанции мощность настолько велика, что подстанция просто не сможет обеспечить большее значение и потеря напряжения не может быть больше по этой причине); при lт менее 15 км принимают m=1, Iрез=300 А. Коэффициент мощности электровоза при расчетах принимают равным 0.8.

    Формула для расчета напряжения магнитного влияния при вынужденном режиме несколько отличается от формулы (17) в связи с несинусоидальностью тока контактной сети и необходимостью как-то учесть эту несинусоидальность:



    В формуле (27) Kф - коэффициент, характеризующий увеличение наведенного напряжения вследствие несинусоидальности тока тяговой сети, обусловленной работой выпрямительных устройств электровозов. Для проводов воздушных линий принимают Kф=1.15.

    РЕЗЮМЕ

    Опасные напряжения магнитного влияния на смежных линиях создаются при двух режимах тяговой сети переменного тока: при коротком замыкании и при вынужденном режиме при одностороннем питании межподстанционной зоны.

    Расчетный ток короткого замыкания определяется как ток двухфазного короткого замыкания и исходя из возможности наибольшего магнитного влияния.

    Расчетный ток вынужденного режима определяется по максимально допустимой потере напряжения в тяговой сети при заданном числе поездов в зоне. Для упрощения расчетов ступенчатый ток контактной сети заменяется одинаковым по всей длине сближения эквивалентным током.
    1   2   3   4   5   6   7   8


    написать администратору сайта