Главная страница

чч. Конспект лекций по дисциплине Хранилища данных для образовательной программы 09. 04. 03 Прикладная информатика


Скачать 1.29 Mb.
НазваниеКонспект лекций по дисциплине Хранилища данных для образовательной программы 09. 04. 03 Прикладная информатика
Дата05.03.2023
Размер1.29 Mb.
Формат файлаdoc
Имя файлаLk.doc
ТипКонспект лекций
#969120
страница7 из 18
1   2   3   4   5   6   7   8   9   10   ...   18

Технические аспекты многомерного хранения данных

Архитектура OLAP


Многомерный анализ данных может быть произведен с помощью различных средств, которые условно можно разделить на клиентские и серверные OLAP-средства.

Клиентские OLAP-средства представляют собой приложения, осуществляющие вычисление агрегатных данных (сумм, средних величин, максимальных или минимальных значений) и их отображение, при этом сами агрегатные данные содержатся внутри адресного пространства такого OLAP-средства.

Если исходные данные содержатся в настольной СУБД, вычисление агрегатных данных производится самим OLAP-средством. Если же источник исходных данных — серверная СУБД, многие из клиентских OLAP-средств посылают на сервер SQL-запросы, содержащие оператор GROUP BY, и в результате получают агрегатные данные, вычисленные на сервере.

Как правило, OLAP-функциональность реализована в средствах статистической обработки данных (из продуктов этого класса на российском рынке широко распространены продукты компаний StatSoft и SPSS) и в некоторых электронных таблицах. В частности, неплохими средствами многомерного анализа обладает Microsoft Excel. С помощью этого продукта можно создать и сохранить в виде файла небольшой локальный многомерный OLAP-куб и отобразить его двух- или трехмерные сечения.

Многие средства разработки содержат библиотеки классов или компонентов, позволяющие создавать приложения, реализующие простейшую OLAP-функциональность (такие, например, как компоненты DecisionCube в Borland Delphi и Borland C++Builder). Помимо этого многие компании предлагают элементы управления ActiveX и другие библиотеки, реализующие подобную функциональность.

Отметим, что клиентские OLAP-средства применяются, как правило, при малом числе измерений (обычно рекомендуется не более шести) и небольшом разнообразии значений этих параметров, — ведь полученные агрегатные данные должны умещаться в адресном пространстве подобного средства, а их количество растет экспоненциально при увеличении числа измерений. Поэтому даже самые примитивные клиентские OLAP-средства, как правило, позволяют произвести предварительный подсчет объема требуемой оперативной памяти для создания в ней многомерного куба.

Многие (но не все!) клиентские OLAP-средства позволяют сохранить содержимое с агрегатными данными в виде файла, что, в свою очередь, позволяет не производить их повторное вычисление. Отметим, что нередко такая возможность используется для отчуждения агрегатных данных с целью передачи их другим организациям или для публикации. Типичным примером таких отчуждаемых агрегатных данных является статистика заболеваемости в разных регионах и в различных возрастных группах, которая является открытой информацией, публикуемой министерствами здравоохранения различных стран и Всемирной организацией здравоохранения. При этом собственно исходные данные, представляющие собой сведения о конкретных случаях заболеваний, являются конфиденциальными данными медицинских учреждений, которые ни в коем случае не должны попадать в руки страховых компаний и тем более становиться достоянием гласности.

Идея сохранения агрегатных данных в файле получила свое дальнейшее развитие в серверных OLAP-средствах, в которых сохранение и изменение агрегатных данных, а также поддержка содержащего их хранилища осуществляются отдельным приложением или процессом, называемым OLAP-сервером. Клиентские приложения могут запрашивать подобное многомерное хранилище и в ответ получать те или иные данные. Некоторые клиентские приложения могут также создавать такие хранилища или обновлять их в соответствии с изменившимися исходными данными.

Преимущества применения серверных OLAP-средств по сравнению с клиентскими OLAP-средствами сходны с преимуществами применения серверных СУБД по сравнению с настольными: в случае применения серверных средств вычисление и хранение агрегатных данных происходят на сервере, а клиентское приложение получает лишь результаты запросов к ним, что позволяет в общем случае снизить сетевой трафик, время выполнения запросов и требования к ресурсам, потребляемым клиентским приложением. Отметим, что средства анализа и обработки данных масштаба предприятия, как правило, базируются именно на серверных OLAP-средствах, например, таких как Oracle Express Server, Microsoft SQL Server Analysis Services, Hyperion Essbase, продуктах компаний Crystal Decisions, BusinessObjects, Cognos, SAS Institute. Поскольку все ведущие производители серверных СУБД производят (либо лицензировали у других компаний) те или иные серверные OLAP-средства, выбор их достаточно широк и почти во всех случаях можно приобрести OLAP-сервер того же производителя, что и у самого сервера баз данных.

Отметим, что многие клиентские OLAP-средства (в частности, Microsoft Excel, Seagate Analysis и др.) позволяют обращаться к серверным OLAP-хранилищам, выступая в этом случае в роли клиентских приложений, выполняющих подобные запросы. Помимо этого имеется немало продуктов, представляющих собой клиентские приложения к OLAP-средствам различных производителей.

OLAP-серверы могут хранить многомерные данные разными способами, которые мы и обсудим в следующем разделе.

1   2   3   4   5   6   7   8   9   10   ...   18


написать администратору сайта