Главная страница

ОсОбогNew1Шир. Конспект лекций В. Б. Кусков санктпетербург 2015 содержание


Скачать 471 Kb.
НазваниеКонспект лекций В. Б. Кусков санктпетербург 2015 содержание
АнкорОсОбогNew1Шир.doc
Дата02.05.2017
Размер471 Kb.
Формат файлаdoc
Имя файлаОсОбогNew1Шир.doc
ТипКонспект
#6249
страница9 из 11
1   2   3   4   5   6   7   8   9   10   11

2.5. специальные МЕТОДЫ ОБОГАЩЕНИЯ



Они включают ручную рудоразборку, радиометрическое обогащение, обогащение по трению и форме, обогащение по упругости, термоадгезионное обогащение, а также обогащение, основанное на селективном изменении размера куска при дроблении.

Ручная сортировка (рудоразборка) представляет собой метод обогащения, при котором используется разница во внешних признаках (цвет, блеск, форма) минералов. Например, в мартитовой руде часто присутствуют сплошные включения известняков. Раздробив такую руду до крупности -100 мм, легко можно выбрать куски известняка. Рудоразборка осуществляется при крупности материала 10 – 300 мм и производится на специальных площадках, неподвижных и круглых подвижных столах и ленточных конвейерах. Ленточные конвейеры, используемые для рудоразборки, следует устанавливать под углом не более 18°, скорость ленты должна быть не более 0,4 м/с. Места рудоразборки должны быть хорошо освещены. Иногда освещение подбирают таким образом, чтобы усилить различие во внешних признаках сортируемых кусков руды. Данный метод достаточно дорог и низко производителен. Ручная рудоразборка применяется при обогащении дорогостоящего сырья (золото, алмазы и др.)

Наибольшее распространение из специальных методов получило радиометрическое обогащение, основанное на различии в способности минералов отражать, испускать и поглощать различные виды излучения.

Радиометрическое обогащение применяют при переработке руд цветных металлов (радиоактивных, редких, тяжелых и др.), алмазов, флюоритовых руд. Принцип всех способов радиометрического обогащения одинаков: на руду, перемещаемую в пространстве, действует какое либо излучение от источника; сигнал, возникающий от взаимодействия минералов с этим излучением, улавливается приемником; информация передается в специальный прибор-радиометр , где обрабатывается и подается команда на исполнительный механизм, направляющий кусок или в сборник концентрата или в сборник хвостов. Для отсечения посторонних сигналов в схеме предусматривается установка фильтров. В случае авторадиометрического обогащения схема значительно упрощается, так как отпадает необходимость в источнике первичного излучения (радиоактивные минералы сами испускают излучение). В качестве первичного излучения используются излучения широкого диапазона длины волн, от самых коротких гамма излучений до самых длинных радиоволн. По длине волны различают следующие группы первичного излучения, применяемых в радиометрических сепараторах:



Характер излучения

Длина волны, НМ(нм-10-9м)

1

Гамма

10-3

2

Бета

10-3-10-2

3

Нейтронное

10-2-10-1

4

Рентгеновское

10-1-10

5

Ультрафиолетовое

3*102

6

Видимый свет

3,8-7,6*102

7

Инфракрасное

102-104

8

Радиоволны

105-1014


По характеру взаимодействия минералов с первичным излучением различают следующие группы: 1) возбуждение вторичного излучения (люминесценции, нейтронного и др.); 2) отражение первичного излучения; 3) поглощение (абсорбция) первичного излучения.

Одними из самых распространенных способов радиометрического обогащения нерадиоактивных руд являются фотометрический и рентгенолюминесцентный.

По способу осуществления радиометрическое обогащение подразделяется на крупно порционную сортировку и радиометрическую сепарацию. При крупно порционной сортировке, являющейся одним из самых дешевых и высокопроизводительных методов обогащения, обогащению подвергаются не отдельные куски, а вагоны, самосвалы, ковши и т.п. Например, крупно порционная сортировка авторадиометрическим методом заключается в регистрации излучения вагонеток с рудой. Если излучение выше некого порогового (а это значит, что в руде много полезного радиоактивного минерала), то вагонетка разгружается и обогащается на фабрике, если излучение меньше порогового (мало полезного компонента) вагонетка отправляется прямо в отвал. Недостаток метода в том, что применим далеко не для всех руд. Полезный (радиоактивный) компонент должен быть неравномерно распределен по разным вагонеткам (в одних его мало в других много), а это бывает достаточно редко. Радиометрическая сепарация предусматривает «просмотр» каждого куска руды. При этом достигаются весьма высокие технологические показатели, но производительность невысока особенно для мелких частиц.

Рентгено-люминисцентный метод основан на различиях в интенсивности люминесценции (холодного свечения) минералов под влиянием рентгеновского излучений. Процесс люминесценции складывается из трех стадий: поглощения энергии возбуждающего излучения, преобразования и передачи энергии возбуждения внутрь тела и испускания света в центрах свечения с возвращением минерала в равновесное состояние. Способностью люминесцировать обладают многие минералы: шеелит, флюорит, алмаз и др. Люминесценция большей части минералов обусловлена присутствием в них примесей-активаторов (люминогенов).

Рентгенолюминесцентный метод является основным для обогащения алмазосодержащих руд. С его помощью обогащаются также флюоритовые и шеелитовые руды. Источником первичного излучения в рентгено-люминесцентных сепараторах являются рентгеновские трубки с различными анодами (вольфрам, медь, серебро, молибден и др.), что дает возможность выбирать оптимальное первичное излучение для данного вида сырья. В сепараторах предпочтительнее использовать трубки с широким пучком излучения. Приемником сигнала люминесценции служат различные фотоэлементы и фотоумножители, тип фотоэлемента определяется длиной волны возбуждаемой люминесценции.

Большинство радиометрических сепараторов имеет сходную конструкцию они имеют питатели, источник излучения (кроме авторадиометрических), регистрирующий прибор и исполнительный механизм. Рентгено-люминесцентные сепараторы отличаются устройством питателей, режимом подачи материала и способом вывода куска. У нас созданы сепараторы серии ЛС (рис. 2.23), которые широко используются для доводки гравитационных и флотационных алмазных концентратов, а также для первичного обогащения алмазных руд. Сепаратор имеет два питателя, второй работает быстрее, чем первый и поэтому частицы на нем вытягиваются в линию и падают по одной. Если частица способна люминесцировать (алмаз) то под действием рентгеновского излучения она начинает светится . Это свечение регистрируется фотоэлектронным умножителем и затем сигнал поступает на исполнительный механизм например, пневмоклапан, который отдувает частицу струей воздуха. Из зарубежных следует отметить сепараторы серии XR, разработанные фирмой«Гансонс Сортекс лимитед» (Великобритания).

Фотометрический метод основан на использовании в различий в способности минералов отражать, пропускать или преломлять свет. Схема фотометрического сепаратора приведена на рисунке 2.24.

Обогащение по трению и форме. Скорость движения частиц по наклонной плоскости (при заданном угле наклона) зависит от состояния поверхности самих частиц, их формы, влажности, плотности, крупности, свойств поверхности, по которой они перемещаются, характера движения (качение или скольжение), а также среды, в которой происходит разделение. Основным параметром, характеризующим минеральные частицы с точки зрения движения их по наклонной плоскости, является коэффициент трения, величина которого определяется в основном формой минеральных частиц. Обогащение по трению будет тем благоприятнее, чем больше разница в коэффициенте трения для частиц пустой породы и полезных минералов. Частицы могут перемещаться под действием собственной силы тяжести (при движении по наклонным плоскостям – рис. 2.25), центробежной силы (при движении по горизонтальной плоскости вращающегося диска) и в результате комбинированного действия сил собственной тяжести, центробежной и трения (винтовые сепараторы).

Эти свойства используются при обогащении алмазной мелочи, асбестовых руд, слюды, разделении абразивов и других материалов.

Обогащение по упругости основано на том, что зерна минералов различной упругости по-разному отскакивают от рабочей поверхности аппаратов и движутся по различным траекториям. Способ широко применяется при сортировке гравия.

Термоадгезионный способ обогащения заключается в том, что при облучении руды световым потоком темноцветные минералы нагреваются сильнее, чем светлые. Попадая затем на конвейер, поверхность которого покрыта термочувствительным материалом (температура пластификации 30-50оС), более нагретые темноцветные минералы прилипают к этой поверхности, а светлые минералы не прилипают и движутся по своей траектории. Способ широко применяется при обогащении каменных солей.

Процесс обогащения по твердости заключается в том, что при измельчении минерального сырья разрушаются более мягкие материалы. Более твердые остаются в крупных кусках.. Затем на грохотах или классификаторах отделяют мелкий продукт от крупного. Такой процесс называют избирательным измельчением. Очень часто дробление и грохочение совмещены в одном аппарате. Способ широко применяется при обогащении углей и осуществляется в барабанных дробилках.
1   2   3   4   5   6   7   8   9   10   11


написать администратору сайта