Главная страница
Навигация по странице:

  • КОНТРОЛЬНАЯ РАБОТА

  • Электронные системы автомобилей В-2. Контрольная работа дисциплина (модуль) Электронные системы автомобилей


    Скачать 372.09 Kb.
    НазваниеКонтрольная работа дисциплина (модуль) Электронные системы автомобилей
    Дата06.02.2023
    Размер372.09 Kb.
    Формат файлаdocx
    Имя файлаЭлектронные системы автомобилей В-2.docx
    ТипКонтрольная работа
    #922415



    МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

    ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
    «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»


    (ДГТУ)
    Факультет «_______________________________________________________»

    наименование факультета

    Кафедра «_________________________________________________________»

    наименование кафедры


    КОНТРОЛЬНАЯ РАБОТА

    Дисциплина (модуль): «Электронные системы автомобилей»

    _____________________________________________________________________________ наименование учебной дисциплины (модуля)

    Направление подготовки/специальность ___ ______________________________________

    код наименование направления подготовки/специальности

    _____________________________________________________________________________

    Направленность (профиль)

    Номер зачетной книжки ______________ Номер варианта ____2____ Группа ________

    Обучающийся ______________________ ______________________

    подпись, дата И.О. Фамилия


    Контрольную работу проверил ____________ _________________________________

    подпись, дата должность, И.О. Фамилия


    Ростов-на-Дону

    20__

    Содержание

    1.Система электронной блокировки дифференциала ведущего моста 3

    2.Комплексные микропроцессорные системы управления бензиновым двигателем (общие характеристики) 6

    3.Электронные системы управления топливоподачей дизелей 10

    4.Электронное управление подвеской 12

    5. Форсунки впрыска топлива для бензиновых двигателей 13

    Список использованных источников 20



    1. Система электронной блокировки дифференциала ведущего моста



    Система, имитирующая блокировку дифференциала, работает циклично. В цикле ее работы присутствует три стадии:

    • стадия увеличения давления;

    • стадия удержания давления;

    • стадия сброса давления.


    Принцип электронной блокировки дифференциала

    1. На первой стадии (когда ведущее колесо начинает проскальзывать) блок управления получает сигналы от датчиков частоты вращения колес и на их основе принимает решение о начале работы.

    Происходит запирание переключающего клапана, а также открытие клапана высокого давления в гидравлическом блоке системы ABS. Насос ABS создает давление в контуре рабочего тормозного цилиндра проскальзывающего колеса. В результате увеличения давления тормозной жидкости происходит торможение буксующего ведущего колеса.

    1. Вторая стадия начинается с момента, когда прекращается пробуксовка колеса. Система имитации блокировки межколесного дифференциала фиксирует достигнутое тормозное усилие за счет удержания давления. В этот момент действие насоса прекращается.

    2. Третья стадия: колесо заканчивает проскальзывать, происходит сброс давления. Переключающий клапан открывается, а клапан высокого давления закрывается.

    При необходимости все три стадии цикла работы электронного дифференциала повторяются. Отметим, что система функционирует, если скорость автомобиля находится в диапазоне от 0 до 80 км/ч.


    Устройство и основные элементы

    Электронная блокировка дифференциала основывается на антиблокировочной системе тормозов (ABS – Antilock Brake System) и является неотъемлемой частью системы курсовой устойчивости ESC. Имитация блокировки отличается от классической системы ABS тем, что может самостоятельно увеличивать давление в тормозной системе автомобиля.
    Схема системы электронной блокировки дифференциала

    Основные элементы системы:

    • Насос: необходим для формирования давления в тормозной системе.

    • Электромагнитные клапаны (переключающий и высокого давления): включены в тормозной контур каждого колеса. Осуществляют управление потоками тормозной жидкости в пределах отведенного им контура.

    • Блок управления: осуществляет управление электронным дифференциалом с помощью специального ПО.

    • Датчики частоты вращения колес (установлены на каждом колесе): нужны для информирования блока управления о текущих значениях угловых скоростей вращения колес.

    Отметим, что электромагнитные клапаны и насос подачи являются элементами гидравлического блока ABS.
    Разновидности системы

    Схема работы электронного дифференциала Renault Clio: система считывает разницу в скорости вращения между двумя передними колесами и подтормаживает проскальзывающее колесо

    Система предотвращения пробуксовки колес устанавливается в машинах многих автопроизводителей. При этом системы, выполняющие одни и те же функции на разных автомобилях, могут иметь разные названия. Остановимся на самых известных – EDS, ETS и XDS.

    EDS – электронная блокировка дифференциала, установленная на большинстве автомобилей (например, Nissan, Renault).

    ETS (Electronic Traction System) – система, аналогичная EDS, разработанная немецким автопроизводителем Mercedes-Benz. Эта разновидность электронного дифференциала выпускается с 1994 года. Компания Mercedes разработала также усовершенствованную систему 4-ETS, которая может подтормаживать все колеса машины. Она устанавливается, к примеру, на среднеразмерные премиум-кроссоверы (M-класс).

    XDS – расширенная EDS, разработанная немецкой автокомпанией Volkswagen. XDS отличается от EDS дополнительным программным модулем. XDS использует принцип поперечной блокировки (подтормаживание ведущих колес).  Эта разновидность электронного дифференциала призвана увеличить тягу, а также улучшить управляемость машины. Система от немецкого автоконцерна устраняет недостаточную поворачиваемость автомобиля при прохождении поворотов на повышенной скорости (такой недостаток при езде присущ переднеприводным автомобилям) – при этом управляемость становится более точной.
    Преимущества электронной блокировки дифференциала

    • повышение тяги при поворотах автомобиля;

    • начало движения без пробуксовки колес;

    • адаптивная настройка степени блокировки;

    • полностью автоматическое включение/выключение;

    • автомобиль уверенно справляется с диагональном вывешиванием колес.


    Применение

    Электронный дифференциал, являясь функцией антипробуксовочной системы, применяется на многих современных автомобилях. Имитацию блокировки применяют такие автопроизводители, как: Audi, Mercedes, BMW, Nissan, Volkswagen, Land Rover, Renault, Toyota, Opel, Honda, Volvo, Seat и другие. При этом EDS используется, к примеру, в автомобилях Nissan Pathfinder и Renault Duster, ETS – на Mercedes ML320, XDS – на машинах Skoda Octavia и Volkswagen Tiguan.

    Благодаря своим многочисленным достоинствам системы имитации блокировки получили большое распространение. Электронный дифференциал оказался самым практичным решением для среднестатистической городской автомашины, которая не передвигается по бездорожью. Данная система, препятствуя пробуксовке колес при начале движения автомобиля, а также на скользком дорожном покрытии и в поворотах, существенно облегчила жизнь многим автовладельцам.


    1. Комплексные микропроцессорные системы управления бензиновым двигателем (общие характеристики)



    Комплексные системы управления двигателем. Регулятор давления системы впрыска топлива «KE-Jetronic» (рис. 1) обеспечивает его непрерывное распределение.

    Дозирование топлива осуществляется по определенной программе и обеспечивается электронным блоком управления (БУ). К дозатору топливо подводится под постоянным перепадом давления, которое поддерживается стабилизатором.

    Плунжер дозатора изменяет давление топлива, поступающего к форсункам, в зависимости от расхода воздуха. Так как подача топлива определяется давлением на входе в форсунку, последняя имеет постоянное проходное сечение.



    Рисунок 1 - Схема системы впрыска топлива «КЕ-Jetronic»
    Программа дозирования топлива на некоторых режимах работы двигателя (пуск, прогрев, разгон, полная нагрузка) может корректироваться по сигналам БУ, который получает информацию от соответствующих датчиков. Корректор электрогидравлического типа может увеличивать или уменьшать давление топлива, устанавливаемое основным дозатором.

    Электронное управление системой впрыска «KE-Jetronic» позволяет автоматически поддерживать заданную частоту вращения коленчатого вала в режиме холостого хода, ограничивать ее максимальное значение.

    На автомобилях кроме микропроцессорных систем управления зажиганием и экономайзера принудительного холостого хода (ЭПХХ) применяются и комплексные системы управления зажиганием и впрыском топлива.

    Взаимосвязанное управление впрыском топлива и зажиганием средствами электроники позволяет в большей степени приблизить программу управления УОЗ к оптимальной.

    Количество впрыскиваемого топлива устанавливается БУ с учетом информации от датчиков, измеряющих объем и температуру воздуха на впуске, частоту вращения коленчатого вала, нагрузку двигателя и температуру охлаждающей жидкости.

    На основании сигналов датчиков БУ рассчитывает количество впрыскиваемого топлива для получения оптимального соотношения топлива и воздуха в горючей смеси.

    Количество впрыскиваемого топлива определяется временем открытия электромагнитного клапана форсунки. Основное время впрыска топлива – время для получения смеси с теоретически необходимым коэффициентом избытка воздуха. Количество воздуха, поступающего в цилиндр за цикл, рассчитывается БУ по данным датчиков расхода воздуха и частоты вращения коленчатого вала двигателя.

    При работе двигателя достигнуть высокой степени очистки отработавших газов по компонентам СО, СН и NOХ можно с помощью трехкомпонентного нейтрализатора.

    При этом состав горючей смеси по коэффициенту избытка воздуха должен быть близок к стехиометрическому. Стабилизация стехиометрического состава горючей смеси обеспечивается с помощью датчика кислорода, устанавливаемого в выпускном трубопроводе.

    Электронные системы управления дизелем. Электронное управление дизелем необходимо для уменьшения количества токсичных веществ в отработавших газах, уменьшения дымности, вибрации, уровня шума, оптимизации и стабилизации частоты вращения коленчатого вала на холостом ходу и т.д.

    С помощью электронного БУ, в котором обрабатывается информация о состоянии двигателя, полученная от различных датчиков, выдаются управляющие сигналы, обеспечивается оптимизация количества подаваемого топлива и момента его впрыскивания.

    Схема системы управления дизелем автомобиля «Toyota» приведена на рис. 2. Система обеспечивает управление количеством подаваемого топлива, моментом начала подачи топлива, воздушной заслонкой, частотой вращения коленчатого вала на холостом ходу и свечой накаливания.



    Рисунок 2 - Система управления дизелем автомобиля «Toyota»:

    1 - специальный клапан управления; 2 - датчик угла поворота коленчатого вала; 3 - жиклер для впуска топлива; 4 - корректирующий резистор; 5 - жиклер для выпуска топлива; 6 - электромагнитный перепускной клапан; 7 - электромагнитный клапан; 8 - датчик температуры поступающего в двигатель воздуха; 9 - система турбонаддува; 10; 16 -клапаны; 11 - датчик воспламенения; 12 - датчик температуры охлаждающей жидкости; 13 - датчик давления поступающего в двигатель воздуха; 14 - сигнал положения педали подачи топлива; 15 - электронный БУ; 17 - воздушные заслонки; 18 - датчик частоты вращения коленчатого вала
    Управление количеством подаваемого топлива осуществляется электронным БУ на основании данных о частоте вращения коленчатого вала и положении педали подачи топлива с учетом поправок на температуру и давление воздуха на впуске, температуру жидкости и т.д.

    Момент подачи топлива выбирается БУ по сигналам датчика положения педали подачи топлива, давления воздуха на впуске. Используя сигналы датчика воспламенения, установленного в камере сгорания, БУ обеспечивает совпадение зарегистрированного момента воспламенения с расчетным моментом.

    Управляя воздушной заслонкой во впускном трубопроводе, можно уменьшить вибрацию двигателя на холостом ходу и устранить вибрацию при остановке двигателя. При отказах системы управления воздушная заслонка автоматически наполовину открывается, что предотвращает чрезмерно резкое увеличение частоты вращения коленчатого вала двигателя. Получая информацию от различных датчиков, БУ обеспечивает подачу такого количества топлива, чтобы частота вращения в режиме холостого хода не отличалась от расчетной. Сила тока свечей накаливания при пуске дизеля регулируется БУ в зависимости от температуры охлаждающей жидкости и ряда других параметров.

    1. Электронные системы управления топливоподачей дизелей



    Применяемые ЭСАУ дизельными двигателями позволяют сни­зить токсичность отработавших газов, уменьшить дымность, шум, стабилизировать работу двигателя на холостом ходу. Они выпол­няют функции управления количеством впрыскиваемого топлива, моментом начала впрыска, частотой вращения коленчатого вала на . холостом ходу, работой свечей накаливания.

    По схемотехническому решению эти системы делятся на три ти­па: аналоговые системы, состоящие в основном из операционных усилителей; цифровые регуляторы, построенные на элементах средней степени интеграции; микропроцессорные системы.

    Цифровые регуляторы позволяют в основном избавиться от этих недостатков, поскольку их точность определяется только выбранной разрядностью и не зависит от влияния внешней среды и вре­мени эксплуатации. Однако это весьма сложные в конструктивном отношении системы, состоящие из значительного числа микросхем и их надежность при использовании на автомобиле невысока. Та­кие системы также не могут перенастраиваться на другой режим эксплуатации либо на другой тип дизеля.

    Для сбора информации о работе двигателя в системе предусмот­рены три типа датчиков: режимных параметров, коррекции и защи­ты.

    К первому типу относятся датчики частоты вращения коленча­того вала п, положения рейки ТНВД гренки и положения педали управления подачей топлива педали по сигналам этих датчиков вы­числяется предварительное значение управляющего воздействия на исполнительный механизм.

    В процессе выполнения программы коммутатор опрашивает по­следовательно все аналоговые датчики. Для подключения датчика частоты вращения коленчатого вала предусмотрен цифровой тай­мер. Непосредственное управление перемещением рейки топлив­ного насоса обеспечивается исполнительным механизмом. Кон­троллер прерываний осуществляет синхронизацию работы про­граммы управления в соответствии с сигналами, снимаемыми с датчиков.

    Итеграль­ная составляющая закона управления формируется в виде суммы всех управляющих воздействий, предшествующих рассчитываемому в данный момент. Дифференциальная составляющая формируется в виде приращений регулируемого параметра за единицу времени, поэтому в системе необходимо иметь устройство измерения време­ни.



    Рисунок 3 – структурная схема системы
    Структурная схема системы показана на рис. 3. Она состоит из программного задатчика положений рейки ПЗ, вычисляемых по значениям частоты вращения коленчатого вала двигателя п, поло­жению педали управления подачей топлива ψпедали и информации от датчиков коррекции ДК; регулятора Р. вычисляющего рассогла­сование между расчетным значением положения рейки hрасч и дей­ствительным hд; исполнительного механизма ИМ, включенного в контур регулятора и формирующего интегральную составляющую топливного насоса высокого давления ТНВД и двигателя Д.

    Микропроцессорная система управления дизелем изменяет угол опережения впрыска топлива по оптимальному закону в зависимости от нагрузки и частоты вращения коленчатого вала.

    Реализация подобного за­кона с помощью центробежной муфты опережения впрыска топлива не представляется возможной.

    Среди существующих ЭСАУ автомобильных дизелей можно выделить системы двух типов: с рядным насосом вы­сокого давления и с рампой-аккумулятором.

    1. Электронное управление подвеской



    В практике проектирования подвесок основное внимание уделяется решению вопросов устойчивости и управляемости автомобиля. При длительном времени движения большое значение имеет плавность движения. В подвесках с постоянными значениями параметров улучшение одних эксплуатационных свойств происходит в ущерб другим.

    Для создания подвески, обеспечивающей удовлетворительные характеристики статической и траекторной устойчивости, управляемости и плавности движения, необходимо предусмотреть возможность изменения в процессе движения основных параметров подвески.

    Можно выделить три направления электронных систем управления подвеской современного автомобиля:

      • управление упругими и гасящими элементами подвески;

      • управление стабилизаторами поперечной устойчивости;

      • управление кинематикой подвески.

    Очевидно, что имеют место и комплексные электронные системы управления подвеской.

    Характеристики, которые получает подвеска того или иного автомобиля, всегда компромиссны. Чтобы кузов автомобиля в определенных режимах (разгон, торможение, прохождение поворотов) не кренился чрезмерно в сторону или не раскачивался в горизонтальном и вертикальном направлении со значительной, а иногда — с угрожающей амплитудой, приходится увеличивать жесткость упругих элементов подвески.

    Однако такой шаг, необходимый для безопасного движения, неизбежно ведет к ухудшению комфорта, поэтому конструкторам почти всегда приходится останавливаться на некоем среднем варианте, который, понятно, не может обеспечить ни максимума безопасности, ни наилучшего комфорта.

    Идеальная подвеска должна самостоятельно изменять свои характеристики в зависимости от дорожных условий, именно такие системы управления принято называть «активными».

    Системы, которые незначительно меняют свои характеристики или отдают это право водителю, называют полуактивными или «пассивными» [18].

    По принципу действия развитие получили два направления активных подвесок: пневматические и гидропневматические.

    5. Форсунки впрыска топлива для бензиновых двигателей



    Форсунки впрыска бензина (ФВБ) по конструктивному устройству и по типу реализованного в них способа управления подразделяют на гидромеханические, электромагнитные, магнитоэлектрические и электрогидравлические.

    В современных системах впрыска бензина используются в основном первые два вида.

    По назначению в системе впрыска форсунки бывают пусковыми и рабочими. Рабочие форсунки делят на два вида: центральные форсунки для одноточечного импульсного впрыска и клапанные форсунки для впрыска топлива с распределением по цилиндрам. Разрабатываются рабочие форсунки для впрыска бензина под высоким давлением непосредственно в цилиндры двигателя внутреннего сгорания (ДВС).

    Следует отметить, что форсунки впрыска бензина изготовляются под каждый тип двигателя индивидуально, т.е. форсунки впрыска не унифицируются и, как правило, не могут переставляться с одного типа двигателя на другой.

    Исключение составляют универсальные гидромеханические форсунки фирмы BOSCH для механических систем непрерывного впрыска бензина, которые широко применялись на различных двигателях в составе системы "K-Jetronic". Но и эти форсунки имеют несколько невзаимозаменяемых модификаций.

    Гидромеханические форсунки

    Гидромеханические форсунки (ГМ-форсунки) бывают открытого и закрытого типов. Первый тип ГМ-форсунок представляет собой жиклерные форсунки и в современных системах впрыска бензина не используется. ГМ-форсунки закрытого типа предназначены для применения в механических системах непрерывного распределенного по цилиндрам впрыска топлива на бензиновых ДВС.

    Такие форсунки не имеют электрического управления. Они открываются под напором бензина, а закрываются возвратной пружиной. Давление напора бензина, при котором закрытая форсунка открывается, называется начальным рабочим давлением (НРД) форсунки и обозначается как Рфн. ГМ-форсунки закрытого типа устанавливаются в предклапанных зонах впускного коллектора для каждого цилиндра в отдельности.

    По конструкции закрытые форсунки могут различаться устройством запорного клапана и способом крепления в литом корпусе впускного коллектора. По типу запорного устройства закрытые форсунки подразделяют на форсунки со сферическим, дисковым и штифтовым клапаном; по способу крепления — на вставные и резьбовые.

    Закрытые ГМ-форсунки в дозировании топлива участия не принимают.

    Их главная функция — распылять бензин на горячие впускные клапаны двигателя. При этом распыленные частицы бензина переходят в парообразное состояние, а впускной клапан охлаждается.

    Чтобы не было соприкосновения струи бензина со стенками предклапанной зоны впускного коллектора, бензин распыляется с раскрывом на угол не более 35е, а форсунка по отношению к клапану устанавливается по строго заданной геометрии.

    Дозирование топлива в механической системе впрыска производится изменением напора бензина у постоянно открытого распылительного сопла форсунки. При этом давление напора формируется давлением вне форсунки — в дифференциальном клапане дозатора-распределителя механической системы впрыска.

    Для того чтобы клапан форсунки закрытого типа находился в состоянии "открыто", давление бензина в клапанной полости 6 должно быть все время несколько выше усилия Рп возвратной пружины 10 (Рфн > Р„).

    Это достигается заданием достаточно высокого (не менее 6 бар) рабочего давления Ps (РДС) в системе (в топливоподающей магистрали до дозатора-распределителя) и поддержанием РДС на постоянном уровне.


    Рисунок 4 – система закрытая форсунка
    Основными параметрами закрытой форсунки являются пять показателей.

    1.    Начальное рабочее давление Рфн (НРД) форсунки сразу после ее сборки на заводе-изготовителе (давление открывания новой форсунки). НРД для закрытых форсунок разных модификаций лежит в пределах 2,7...5,2 кг/см2. Для новых форсунок из одного типоразмерного ряда НРД может отличаться не более чем на ±20%. При подборе комплекта форсунок на двигатель различие НРД не должно превышать ±4%. В продажу (как запчасти) форсунки поступают с одинаковым НРД в упаковке. Замена форсунок неполным комплектом может стать причиной нарушения нормальной работы двигателя.

    2.    Минимальное рабочее давление Рф т|„ (МРД) форсунки после ее приработки на двигателе (после 5000 км пробега). Это давление становится меньше НРД новой форсунки на 15...20% и стабилизируется (за 5 лет нормальной эксплуатации изменяется не более чем на 5%).

    3.    Рабочее давление Рф форсунки после ее приработки. Это изменяющееся во время работы двигателя давление во внутренней полости форсунки от минимального рабочего давления Рф min (МРД) до максимального значения рабочего давления Ps max(РДС)в механической системе впрыска.

    4.    Давление отсечки форсунки Р0 (ДОТ). Это давление, ниже которого форсунка надежно закрытаиногда называется давлением слива). Давление отсечки всегда меньше Рф min на 1,0...1,5 кг/см2, но несколько больше остаточного давления Рост в системе  впрыска  сразу  после  выключения  двигателя.

    5. Производительность Пф форсунки. Это количество бензина, которое распыляется через постоянно открытую форсунку за единицу времени при определенном рабочем давлении Рф в полости форсунки. Обычно Пф закрытой форсунки задается для двух крайних значений рабочего давления: Рф min и Ps max. Этим двум значениям соответствуют два режима работы двигателя: Рф m,n — холостому ходу, Ps m8K — полной нагрузке. Производительность Пф задается в см3/мин или в гр/с. Например, для закрытых форсунок 5-ти цилиндрового ДВС автомобиля AUDI-1O0 (2,2 л, 140 л/с) показатели производительности соответственно равны 30 и 90 см3/мин (при работе в системе "K-Jetronic").
    Вышедшие из строя форсунки закрытого типа ремонту не подлежат, но, как и любые другие, могут быть "промыты" в составе системы впрыска на работающем двигателе.

    Электромагнитные форсунки

    Электромагнитные форсунки применяются в современных системах впрыска бензина в качестве клапанных рабочих и пусковых форсунок (для систем распределенного по цилиндрам впрыска с электронным управлением), а также в качестве центральных форсунок впрыска (в системах питания с моновпрыском).

    Центральная форсунка наиболее распространенной конструкции для систем впрыска бензина группы "Mono".
    Современные ЭМ-форсунки способны надежно срабатывать со скважностью* S = 0,5 и при этом устойчиво (управляемо) удерживать открытое состояние в течение 2...2,5 мс. Разброс этого параметра в конкретном типоразмерном ряде форсунок не более ±5%. Такой быстроте срабатывания ЭМ-форсунки отвечает частота возвратно-поступательного движения подвижного стержня электромагнита форсунки в 200...250 с-1. Это является пределом возможного для данного типа электроуправляемых форсунок.

    При применении ЭМ-форсунок в качестве клапанных рабочее давление Ps в системе впрыска может быть понижено с 6,5 бар (в механических системах) до 4,8...5 бар, что повышает надежность работы электробензонасоса и понижает вероятность протечек топлива в уплотнительных соединениях бензома-гистралей.

    При электронном управлении форсунками точность дозирования впрыснутого бензина значительно повышается. Это становится возможным потому, что давление внутри ЭМ-форсунки поддерживается постоянным, и количество впрыснутого топлива определяется только временем открытого состояния форсунки.



    Рисунок 5 - Электромагнитная форсунка:

    1 – насадка распылителя, 2 – уплотнительное кольцо, 3 – шайба, 4 – игла клапана, 5 – уплотнитель, 6 – ограничительная шайба, 7 – корпус, 8 – изолятор, 9 – обомотка электромагнита, 11 – колодка, 12 – фильтр, 13 – трубка, 14 – крышка, 15 – пружина, 16 – сердечник электромагнита, 17 – корпус клапана –распылителя.
    Основными параметрами ЭМ-форсунки являются:

    1.    Постоянное рабочее давление в полости форсунки (РДФ), равное рабочему давлению Ps системы, выраженное в бар.

    2.    Производительность   форсунки  (пропускная способность в открытом состоянии — в см3/мин или в г/с при заданном Ps РДС).

    3.    Минимальное напряжение надежного срабатывания форсунки (постоянное напряжение в вольтах).

    4.    Минимальное время цикловой подачи топлива (минимальное надежно управляемое время продолжительности открытого состояния форсунки — в мс).

    5.    Внутреннее омическое сопротивление Нф форсунки (сопротивление катушки соленоида — в омах).

    На корпусе форсунки набивается цифровой код, по которому в справочном каталоге можно определить все вышеперечисленные параметры. На корпусе выбивается также торговый знак или название фирмы-изготовителя.

    По типу запирающего клапана ЭМ-форсунки, как и гидромеханические, подразделяют на три вида:

    —     форсунки со сферическим профилем запорного элемента:

    —     форсунки с штифтовым клапаном (с конусным или игольчатым запорным стержнем):

    —     форсунки с дисковым клапаном (с плоским или тарельчатым запорным элементом).

    Пусковые электромагнитные форсунки

    К электромагнитным форсункам относятся и пусковые гидроклапаны с электромагнитным управлением, которые по принципу действия мало чем отличаются от ЭМ-форсунок. Именно поэтому пусковые гидроклапаны чаще называют пусковыми форсунками.

    Основное назначение пусковой форсунки (ПС-форсунки) — это работа в механической системе непрерывного распределенного впрыска во время запуска холодного двигателя. Иногда ПС-форсунка используется как форсажное устройство, наподобие ускоритвльного насоса в карбюраторе, или как устройство для запуска перегретого двигателя с турбонаддувом. Пусковая форсунка применяется и в некоторых системах впрыска группы "L".

    Форсунка закрытого типа с плунжерным насосом

    Ведутся исследования в направлении поиска принципиально новых способов впрыска бензина с помощью форсунок. Испытаны так называемые магнитоэлектрические форсунки, которые отличаются высоким быстродействием (0,5 мс), так как работают с принудительным высокочастотным (до 1000 с"1) переключением полярности магнитного поля в катушке соленоида.

    Перспективными считаются также форсунки закрытого типа с дополнительным электромагнитным управлением (электрогидравлические).
    В системах впрыска бензина группы "Д" (впрыск в камеру сгорания) используется насос-форсунка закрытого типа с плунжерным насосом высокого давления, который приводится в действие от кулачка распредвала.



    Рисунок 6- насос-форсунка
    Насос-форсунка оснащен сливным каналом с быстродействующим электрогидравлическим клапаном. Комбинация — плунжерный насос, закрытая гидромеханическая форсунка, электроуправляемый от электронной автоматики сливной канал — дает возможность реализовать так называемый "послойный впрыск бензина" непосредственно в камеру сгорания ДВС.

    Это обеспечивает значительную экономию топлива за счет работы двигателя на очень бедных ТВ-смесях (а = 2,0), а также повышает ряд его эксплуатационных показателей.

    Список использованных источников



    1. Калинин Ю.Н., Туревский И.С., Соков В.Б. Электрооборудование автомобилей: учебник для вузов.- М.: Форум, Инфра-М, 2013.- 368 с.

    2. Набоких В.А. Электрооборудование автомобилей и тракторов: учебник для вузов.- М.: Academia, 2012.- 395 с.

    3. Технические средства диагностирования транспортных машин: учеб. пособие/ С.И. Попов, Ю.П. Рункевич, Ю.В. Марченко и др.- Ростов н/Д: Издательский центр ДГТУ, 2016.- 199 c.

    4. Диагностирование и испытание электрооборудования транспортных машин: учеб. пособие/ С.И. Попов, В.Ю. Валявин, С.Ф. Подуст и др.- Ростов н/Д: Издательский центр ДГТУ, 2010.- 115c.

    5. Ютт В.Е. Электрооборудование автомобилей: учебник для вузов / В.Е. Ютт. – М.: Горячая линия. – Телеком, 2006. – 440 с.

    6. Чижков Ю.П., Акимов С.В. Электрооборудование автомобилей: учебник для вузов.- М.: За рулем, 2007.- 336 с.

    7. Чижков Ю.П. Электрооборудование автомобилей. Курс лекций. Ч.1.- М.: Машиностроение, 2003.- 240 с.

    8. Чижков Ю.П. Электрооборудование автомобилей. Курс лекций. Ч.2.- М.: Машиностроение, 2003.- 320 с.


    написать администратору сайта