Конструкция и расчёт энергетических установок. Контрольная работа по дисциплине Конструкция и расчёт энергетических установок (на примере автомобиля зил130)
Скачать 118.9 Kb.
|
1.7 Система смазки Между отдельными деталями двигателя, поверхности которых перемещаются одна относительно другой, возникает сила, препятствующая этому перемещению, называемая силой трения. Сила трения зависит от точности обработки соприкасающихся поверхностей, давления и скорости относительного перемещения. На преодоление сил трения затрачивается часть мощности двигателя; помимо этого трение приводит к износу деталей и их нагреву. Уменьшение сил трения достигается улучшением качества обработки поверхности, применением антифрикционных сплавов, шариковых и роликовых подшипников. Одним из наиболее эффективных способов уменьшения сил трения является смазка. Смазка, находящаяся между трущимися поверхностями, разделяет их, заменяя непосредственное трение деталей трением слоев смазки между собой. Помимо этого, масло охлаждает смазываемые детали и уносит твердые частицы между ними. Недостаточная подача масла вызывает потерю мощности, усиленный износ, перегрев и даже расплавление подшипников, заклинивание поршней и прекращение работы двигателя. При чрезмерной подаче часть масла попадает в камеру сгорания, отчего увеличивается отложение нагара и ухудшаются условия работы свечей зажигания. Норма расхода масел составляет: для карбюраторных двигателей 2,4% от нормы расхода топлива, для дизельных двигателей -^-3,2 %. В зависимости от размещения и условий работы деталей масло может подаваться под давлением, разбрызгиванием и самотеком. В автомобильных двигателях применяются все три способа подвода масла, при этом к наиболее нагруженным деталям масло поступает под давлением, к другим — разбрызгиванием и самотеком. Для хранения, подвода, очистки и охлаждения масла применяют ряд приборов, маслопроводов и каналов, образующих систему смазки. В качестве примера рассмотрим систему смазки двигателя ЗИЛ-130 (рис. 27). Схема системы смазки двигателя ЗИЛ-130 показана на рис. 27, а. Масло из поддона картера через масло-приемник засасывается в масляный насос. Нижняя секция масляного насоса подает масло к радиатору, а оттуда в поддон картера двигателя. Верхняя часть под давлением через канал в задней перегородке блока цилиндров подает масло для очистки в масляный фильтр. Из фильтра масло поступает в распределительную камеру, расположенную в задней перегородке блока цилиндров, и далее в два продольных магистральных канала, выполненных в левом и правом рядах цилиндров. Из магистральных каналов масло под давлением подается к направляющим втулкам толкателей, к опорным шейкам распределительного вала — к шатунным подшипникам. Из переднего конца правого магистрального канала масло подается для смазки компрессора. В средней шейке распределительного вала выполнены отверстия, при совпадении которых с отверстиями в блоке цилиндров (1 раз при каждом обороте распределительного вала) пульсирующая струя масла подается в каналы головки цилиндров. Из зазора между осью коромысел и отверстием в коромысле масло через канал, выполненный в коротком плече, поступает для смазки сферических опор штанг, а часть его попадает на стержни клапанов и механизмы их поворотов. В передней шейке распределительного вала имеется канал для подачи масла под давлением к упорному фланцу. Остальные детали двигателя смазываются разбрызгиванием и самотеком. На стенки цилиндров масло выбрызгивается из отверстий в теле шатунов в момент их совпадения с масляным каналом коленчатого вала (см. рис. 27, г). Масло, снимаемое со стенок цилиндров маслосъемным кольцом, через отверстия в канавке поршня отводится внутрь поршня и смазывает опоры поршневого пальца в бобышках поршня и верхней головки шатуна. Распределительные шестерни смазываются маслом, поступающим самотеком по каналам для стока масла из головки цилиндров. Цилиндры, втулки верхних головок шатунов, стержни клапанов, поршневые пальцы, толкатели и кулаки распределительного вала смазываются разбрызгиванием масла. Шестерни привода распределительного вала смазываются маслом, стекающим из фильтра центробежной очистки, а привод прерывателя-распределителя и его шестерни •— маслом, поступающим из полости, расположенной между пятой шейкой распределительного вала и заглушкой блока цилиндров. В системе смазки предусмотрен масляный радиатор, который установлен впереди радиатора системы охлаждения. Его включают и выключают краном. Система смазки двигателя автомобиля КамАЗ показана на рис. 29. Из поддона масло через маслоприемник засасывается двумя секциями масляного насоса. Через канал в правой стенке масло из нагнетальной секции насоса подается в корпус полнопоточного фильтра, где оно очищается, проходя через два фильтрующих элемента, и поступает в главную масляную магистраль. Из главной масляной магистрали масло по каналам в перегородках блока подводится к коренным подшипникам коленчатого вала, к подшипникам распределительного вала, втулкам коромысел и по каналу в штангах клапанов — к толкателям. К шатунным подшипникам коленчатого вала масло подается по каналам в коленчатом валу. Масло, снимаемое со стенок цилиндров маслосъем-ным кольцом, через отверстия в канавке кольца и сверления в поршне отводится внутрь его и смазывает опоры поршневого пальца в бобышках поршня и верхней головки шатуна. Из канала в задней стенке блока масло поступает под давлением по трубке к подшипникам компрессора. Из канала в передней стенке блока — для смазки подшипников топливного насоса высокого давления. Из главной масляной магистрали масло под давлением подается к термосиловому датчику, который расположен в переднем торце блока и управляет работой гидромуфты привода вентилятора в зависимости от температуры жидкости в системе охлаждения. Масло из радиаторной секции насоса поступает к фильтру центробежной очистки и, проходя через радиатор, сливается в поддон. При закрытом кране включения масляного радиатора масло из центрифуги сливается в поддон картера через сливной клапан. Для создания наилучших условий смазки в системе должно поддерживаться определенное давление, контроль за которым осуществляют при помощи указателей или контрольных ламп, принцип действия которых описан в разделе «Электрооборудование». Давление масла в системе смазки прогретого двигателя при скорости движения 40 км/ч на прямой передаче должно быть для ЗИЛ-130 0,2 ... 0,4 МПа. При работе двигателя на малой частоте вращения коленчатого вала давление может снижаться до 0,05 МПа. На двигателе ЗМЗ-53 при скорости 50 км/ч на прямой передаче давление масла должно быть не менее 0,25 МПа. Давление масла в системе смазки прогретого двигателя автомобиля КамАЗ при частоте вращения коленчатого вала 2600 мин-1 должно быть 0,45 ... 0,5 МПа, а при 600 мин-1 — не менее 0,1 МПа. Вместимость системы смазки двигателей ЗИЛ-130— 8,5 л, ЗМЗ — 8 л, КамАЗ — 23 л. Масло выпускается из системы через сливное отверстие поддона картера, закрываемое пробкой. Масляный насос служит для создания необходимого давления в системе смазки. Насос состоит из корпуса, внутри которого расположены две пары шестерен. Две шестерни насажены неподвижно на приводном валике, а другие две — свободно на оси. Приводной валик приводится в действие от косозубой шестерни на распределительном валу (ЗИЛ-130, ЗМЗ-53) или от шестерни на переднем конце коленчатого вала (КамАЗ-740). При вращении шестерен насоса их зубья захватывают масло у входного отверстия, проносят у стенок корпуса и выдавливают в выходное отверстие. В двигателе ЗИЛ-130 верхняя секция насоса подает масло в систему смазки и фильтр центробежной очистки, нижняя — к масляному радиатору. В двигателе ЗМЗ-53 верхняя секция подает масло для смазки двигателя, а нижняя — в фильтр центробежной очистки. Как в двигателе ЗИЛ-130, так и в ЗМЗ-53 масляный насос расположен снаружи двигателя. Масло поступает к масляному насосу через масло-приемник с сетчатым фильтром. В изучаемых двигателях маслоприемник состоит из корпуса и сетки. Масляные фильтры. Качество масла в двигателе не остается постоянным, так как масло засоряется мелкой металлической пылью, появляющейся в результате износа деталей, частицами нагара, образовывающегося в результате сгорания его на стенках цилиндров. При высокой температуре деталей масло коксуется, образуются смолы и лакообразные продукты. Все эти примеси являются вредными и для их удаления применяются масляные фильтры. Фильтр центробежной очистки масла. На изучаемых двигателях установлен фильтр цетробежной очистки с реактивным приводом. Фильтр состоит из корпуса с осью, где на подшипнике размещен ротор с колпаком. Снизу ротора размещены два жиклера с отверстиями, направленными в разные стороны, и фильтрующая сетка. Колпак закреплен на оси ротора при помощи гайки и закрыт сверху неподвижным кожухом с барашковой гайкой. Ротор вращается под действием струй масла, выбрасываемого под давлением через два жиклера. Масло поступает в полую ось ротора, а затем внутрь колпака. При вращении ротора тяжелые частицы, загрязняющие масло, отбрасываются на стенки колпака, на которых и оседают. Далее масло проходит через сетку, очищается и выбрасывается из жиклеров, стекая в поддон картера. Масляный радиатор. В жаркое время года и при эксплуатации автомобиля в тяжелых дорожных условиях температура масла настолько повышается, что оно становится очень жидким и давление в системе смазки падает. Для охлаждения масла и предотвращения его разжижения в систему смазки двигателей включен масляный радиатор, который состоит из двух бачков и горизонтальных трубок, расположенных между ними. Для увеличения поверхности охлаждения и повышения жесткости радиатора трубки скреплены металлическими ребрами. На автомобиле ЗИЛ-130 масляный радиатор выполнен в виде трубчатого змеевика с оребрением для увеличения поверхности теплоотдачи. Масляный радиатор оказывает сравнительно небольшое сопротивление прохождению масла, в результате чего давление в системе может снизиться и подача масла к трущимся поверхностям уменьшиться. Для предотвращения этого явления масляный радиатор двигателя включается краном, перед которым установлен предохранительный клапан, перекрывающий доступ масла в радиатор при понижении давления в системе ниже 0,1 МПа. В двигателе ЗИЛ-130 масло поступает из нижней секции насоса и при выключении радиатора все масло через перепускной клапан, расположенный в крышке насоса, попадает во всасывающую полость насоса, минуя радиатор. В системе смазки двигателей автомобилей все масло, прошедшее через радиатор, попадает в поддон картера. В непрогретом двигателе давление в системе смазки может настолько возрасти, что вызовет разрушение каналов системы смазки. Для предотвращения разрушения масляных магистралей при повышенном давлении и обеспечения нормальной подачи масла при износе деталей в системе предусмотрен редукционный клапан. Редукционный клапан верхней секции насоса двига-теля.^МЗ-53 расположен в передней части блока цилиндров с правой стороны, а клапан нижней секции расположен в корпусе самого насоса. В двигателе ЗИЛ-130 редукционный клапан верхней секции насоса расположен в чугунной прокладке между верхней и нижней секцией насоса. На заводах редукционный клапан регулирует на давление 0,2 ... 0,4 МПа и в процессе эксплуатации его обычно не регулируют. В каждой секции масляного насоса двигателя автомобиля КамАЗ имеются предохранительные клапаны, отрегулированные на давление 0,8 ... 0,85 МПа. В корпусе нагнетательной секции размещен дифференциальный клапан, ограничивающий давление в главной магистрали в пределах 0,4 ... 0,45 МПа. В случае засорения полнопоточного фильтра со сменными фильтрующими элементами масло будет поступать в главную магистраль через перепускной клапан, установленный в фильтре. В корпусе центробежного фильтра двигателя автомобиля КамАЗ установлены два клапана, один — перепускной, ограничивающий максимальное давление перед центрифугой до 0,65 МПа, другой — предохранительный, отрегулированный на давление 0,05 ... 0,07 МПа. Маслопроводы выполнены в виде латунных или прорезиненных трубок, соединяющих отдельные участки системы смазки и каналов, высверленных в блоке цилиндров, коленчатом валу, шатунах, осях коромысла, в коромыслах, корпусах фильтров и др. Маслоналивные патрубки расположены сверху или сбоку двигателя и соединены с поддоном картера непосредственно через маслоналивную трубу. Маслоналивные патрубки имеют воздушные фильтры. Контроль за уровнем масла в двигателе осуществляют масломерной линейкой, имеющей отметки «0» и «Полно». Необходимо следить, чтобы уровень масла был у отметки «Полно». Вентиляция картера двигателя. В картере работающего двигателя через зазоры между зеркалом цилиндра и кольцами проникают пары топлива и отработавшие газы. Пары топлива конденсируются и разжижают смазку, а отработавшие газы, содержащие в себе пары воды-^ сернистые соединения, также отрицательно влияют на качество масла и уменьшают срок его службы. Удаляют прорвавшиеся в картер пары топлива и газы при помощи системы вентиляции картера. В двигателе ЗИЛ-130 применена принудительная вентиляция картера. Чистый воздух попадает в картер двигателя через воздушный фильтр, объединенный с маслоналивным патрубком. Из патрубка воздух попадает в картер распределительных шестерен и в картер двигателя. Отсасываемый воздух проходит через уловитель, где отделяются частицы масла, затем через клапан и трубку попадает в центральную часть впускного трубопровода. При работе двигателя с прикрытым дросселем под действием большого разрежения по впускном трубопроводе клапан поднимается, верхняя ступенчатая часть клапана входит в отверстие штуцера и уменьшает проходное сечение канала. Это сделано для того, чтобы уменьшить подсос постороннего воздуха и дать возможность двигателю устойчиво работать на холостом ходу. При работе с полностью открытым дросселем разрежение во впускном трубопроводе падает и клапан под действием собственного веса опускается вниз, открывая полностью проходное сечение канала. В двигателе ЗМЗ-53 система вентиляции открытая, вытяжная (рис. 33). Воздух поступает через сетчатый воздушный фильтр маслоналивной горловины, проходит в коробку распределительных шестерен и картер двигателя. Из картера двигателя отработавшие газы отсасываются в полость между рядами цилиндров и впускным трубопроводом и через фильтр попадают в вытяжную трубу с косым срезом. При движении автомобиля у косого среза трубки создается разрежение, благодаря которому и отсасываются отработавшие газы в атмосферу. 1.8 Система охлаждения Система охлаждения предназначена для принудительного отвода от деталей лишней теплоты и передачи её окружающему воздуху. В результате этого создается определённый температурный режим, при котором двигатель не перегревается и не переохлаждается, т.е. рабочий цикл протекает нормально. На двигатели ЗИЛ-130 приняты жидкостная система охлаждения закрытого типа с предельной циркуляцией охлаждающей жидкости от водяного насоса. Наивыгоднейший тепловой режим работы двигателя создается при температуре охлаждающей жидкости 80 –95 градусов Цельсия и обеспечивается системой охлаждения двигателя. Охлаждающая жидкость в систему охлаждения двигателя заливается через горловину верхнего бака радиатора 2, закрываемый пробкой 3. Полная емкость системы охлаждения двигателя с отопительным и пусковым подогревателем 29 л., а без них 26 л. Выпуск охлаждающей жидкости необходимо обязательно осуществлять через три крана, рис. 2. Два сливных крана одной рубашки охлаждения установлены на правом и левом рядах блока цилиндров и один сливной кран 10 радиатора установлен на отводящих патрубке радиатора. Привод к каналам дистанционный, его осуществляют специальными тягами. Рассмотрим устройство основных приборов системы охлаждения, двигателя. Система охлаждения должна быть полностью заполнена охлаждающей жидкостью. Если жидкости не достаёт 5-7 % от ёмкости системы, может прекратиться её циркуляция, что при низких температурах приводит к образованию, а при высоких температурах к перегреву двигателя . Для контроля температурного состояния системы в рубашке охлаждения впускного трубопровода установлен датчик указателя температуры охлаждающей жидкости. Охлаждающая жидкость из радиатора поступает по нижнему патрубку к кысянчу с распорной пружиной в водяной насос из которого по двум раструбам и поступает в правую и левую рубашки охлаждения блока цилиндров. А рубашке охлаждения жидкость поднимается вверх и по каналам, проходящим у выпускных клапанов, поступает в рубашки охлаждения головок цилиндров, из которых горячая жидкость проходит в рубашку впускного труба провода и нагревает его, обеспечивая лучшие условия смесеобразования . Далее жидкость проходит через клапан термостата и по выпускному патрубку и его шлангу возвращается в радиатор, где нагретая жидкость охлаждается. 2. Тепловой расчет Цель теплового расчета - определить параметры рабочего тела в характерных точках рабочего цикла для определения технико-экономических показателей модернизируемого двигателя и построения индикаторной диаграммы. Тепловой расчет выполняется по модернизированному методу порф. Гриневецкого. 2.1 Выбор и обоснование исходных параметров для теплового расчета Степень сжатия Для двигателей с искровым зажиганием =(611). =8,3 Отношение хода поршня к диаметру цилиндра Для проектируемого двигателя значение отношения S/D принимаем меньше 1. Число и расположение цилиндров - остаются неизменными, т.е. четыре цилиндра расположенных в ряд. Частота вращения коленчатого вала - для легковых автомобилей с КБД n = (40006000) мин-1. Принимаем n=3300 мин-1 Коэффициент избытка воздуха =0,91. Применяем жидкое топливо нефтяного происхождения - бензин марки АИ-92, для обеспечения бездетонационного сгорания. Давление окружающей среды Р0 - постоянная величина. Р0=0,1МПа Температура окружающей среды Т0 (атмосферного воздуха). Принимается среднее значение Т0=288 К. Давление остаточных газов Рr, МПа, определяется давлением окружающей среды, в которую происходит выпуск отработавших газов и оборотами двигателя. . Температура остаточных газов Tr, К, для КБД изменяется в пределах 900 - 1100 К[2] . При увеличении и - Тr снижается, а при увеличении n увеличивается. Принимаем Степень подогрева заряда на впуске Т=10 - 20 К[2]. При увеличении диаметра цилиндра D, увеличении n и - Т уменьшается. Принимаем Коэффициент сопротивления С изменяется в пределах 2,5 - 4,0. Он учитывает падение скорости свежего заряда после входа его в цилиндр и гидравлические сопротивления впускной системы двигателя. Принимаем С = 3. Средняя скорость воздуха в проходных сечениях впускных клапанов Wкл может достигать 150 м/с. Эта скорость зависит от диаметра впускного клапана и частоты вращения коленвала. При уменьшении диаметра впускного клапана и увеличении n, средняя скорость Wкл увеличивается. Она ориентировочно определяется по зависимости. . Показатель политропы сжатия (условный) n1=1,32 - 1,40. При повышении n увеличивается и n1; при повышении средней температуры процесса сжатия n1 - уменьшается; с уменьшением интенсивности охлаждения двигателя n1 - увеличивается; с уменьшением отношения поверхности охлаждения к объему цилиндра n1 - увеличивается. Учитывая все это принимаем n1=1,38. Коэффициент эффективного теплоиспользования z=0,85 - 0,9 это параметр, учитывающий потери теплоты в процессе сгорания. Принимаем z=0,88. Коэффициент полноты индикаторной диаграммы учитывает уменьшение теоретического среднего индикаторного давления вследствие отклонения действительного процесса от расчетного. Принимаем i=0.96. |