контр работа Суханова. Контрольная работа По дисциплине Вычислительная техника и информационные технологии
Скачать 253.94 Kb.
|
Рис. 3. Структурная схема АЦП поразрядного кодирования Основой АЦП является регистр последовательных приближений. Он представляет собой сдвигающий регистр, в котором последовательно, начиная со старшего разряда формируется логическая единица. В зависимости от сигнала Uупр, поступающего на его вход, эта единица или остается или заменяется логическим "0". Резистивная матрица формирует аналоговое напряжение, эквивалентное "весу" цифрового кода, поступающего на матрицу с регистра приближений. Схема сравнения сравнивает напряжения Ux и Uм, и в зависимости от их величин формирует сигнал Uупрна уровне лог."0" или лог."1" . АЦП поразрядного взвешивания нашли широкое применение при разработке ИС ввиду своей простоты и достаточно хорошего быстродействия. Такие ИС могут иметь в своем составе генератор тактовых импульсов и источник эталонного напряжения или не иметь их. В качестве примера рассмотрим АЦП, выполненное на ИС К1113ПВ1. ИС предназначена для преобразования однополярного или биполярного аналогового напряжения (Uвх=0…10В или Uвх= -5В…+5В) в десятиразрядный двоичный код. Нелинейность преобразования ±0,1%, время преобразования 30мкс. Для работы ИС требуется два источника питания +5В и –15В. В микросхему встроен внутренний источник опорного напряжения и генератор тактовых импульсов. Рис. 4. ИС К1113ПВ1 (а) и временная диаграмма ее работы (б). Запуск АЦП производится лог."0". Цифровая информация с выходных шин снимается через 30мкс после поступления сигнала "Гашение-преобразование". Tпреобр=30мкс. Работа АЦП поясняется временной диаграммой его работы (рис.4.). Следящие АЦП в отличие от АЦП поразрядного взвешивания имеют в своем составе вместо регистра последовательных приближений реверсивный счетчик (рис.5.). Работа АЦП поясняется временной диаграммой работы(б). Управление реверсивным счетчиком производится по управляющей шине "±" в зависимости от соотношения сигналов Ux и Uм. При изменении входного сигнала Ux, изменяется код реверсивного счетчика и напряжение с матрицы Uм "следит" за Ux. Рис.5. Следящие АЦП (а),временная диаграмма ее работы (б). ИнтегрирующиеАЦП относятся к медленнодействующим преобразователям. Принцип их действия основан на преобразовании аналоговой величины во временной интервал tx и формировании число-импульсного (единичного) кода путем заполнения этого интервала импульсами опорной частоты f0. Значение единичного кода определяется соотношением: N(1)=tx* f0 Число-импульсный код поступает на счетчик, на выходе которого формируется цифровой код. Структурная схема такого АЦП приведена на рис.6 а. Рис.6. Структурная схема (а) и временная диаграмма работы (б) интегрирующего АЦП Максимальное время преобразования зависит от разрядности АЦП и определяется гдеf0 – период частоты кварцевого генератора. Погрешность интегрирующего АЦП определяется, в основном, изменением наклона пилообразного напряжения, которое определяется постоянной времени RC интегратора (генератора пилообразного напряжения). Под воздействием внешних дестабилизирующих факторов, особенно температуры, постоянная времени, а следовательно, и наклон пилообразного напряжения меняется, что приводит к значительным погрешностям преобразования. Поэтому в настоящее время для построения интегрирующих АЦП используют принцип двойного интегрирования. Принцип работы АЦП двойного интегрирования заключается в том, что сначала в течении некоторого фиксированного временного интервала Т1 интегрируется аналоговая преобразуемая величина Ux, а затем интегрируется эталонное (опорное) напряжение противоположной полярности Uоп. Временной интервал Т2 пропорционален преобразуемой величине Ux. Рис.7. Структурная схема АЦП двойного интегрирования (а) и временная диаграмма его работы (б) Действительно в течении интервала времени Т1 напряжение на выходе интегратора изменяется по линейному закону: В течении интервала времени Т2 выходное напряжение на выходе интегратора изменяется от Uвых.инт.мах до 0, т.е. Следовательно, Таким образом интервал времени Т2 зависит от постоянной величины Т1/Uоп и переменной Uх и не зависит от параметров интегратора. В этом можно убедиться на графике, приведенном на рис.8. Рис.8. Напряжение на выходе интегратора при постоянной времени τ1=R1*C1 (1) и при τ2=R2*C2 (1) АЦП двойного интегрирования обеспечивает высокую точность преобразования в условиях промышленных помех в широком интервале температур и широко используется в измерительной технике и автоматизированных системах управления. |