Главная страница
Навигация по странице:

  • Что такое космическое излучение.

  • Возникновение космического излучения.

  • Воздействие космического излучения на человека и окружающую среду

  • Средства защиты от космического излучения.

  • 7. Список литературы.

  • космическое излучение. Космическое излучение. Космическое излучение


    Скачать 32.21 Kb.
    НазваниеКосмическое излучение
    Анкоркосмическое излучение
    Дата26.05.2022
    Размер32.21 Kb.
    Формат файлаdocx
    Имя файлаКосмическое излучение.docx
    ТипРеферат
    #550255

    Санкт-Петербургский университет технологий управления и экономики.

    Реферат на тему:

    «Космическое излучение».

    Работу выполнил:
    Студент группы ОГСНб-Л04-20-4
    Попова Анна Юрьевна


    Работу проверил:
    _______________

    Санкт-Петербург 2022.
    СОДЕРЖАНИЕ.

    1. Введение.

    2. Что такое космическое излучение.

    3. Возникновение космического излучения.

    4. Воздействие космического излучения на человека и окружающую среду.

    5. Средства защиты от космического излучения.

    6. Заключение.

    7. Список литературы.


    1. Введение.

    Психологи утверждают, что человек может бесконечно долго смотреть на три вещи: огонь, воду и звездное небо. Действительно, небо всегда привлекало человека. Оно удивительно красиво на восходе и закате солнца, оно кажется безгранично голубым и глубоким днем. И, глядя на пролетающие невесомые облака, наблюдая за полетами птиц, хочется оторваться от повседневной суеты, подняться в небо и почувствовать свободу полета. А звездное небо темной ночью… как оно загадочно и необъяснимо прекрасно! И как хочется приоткрыть завесу таинственности. В такие минуты ты ощущаешь себя маленькой частицей огромного, пугающего и все же непреодолимо манящего тебя пространства, которое носит название Вселенной.

    Что такое Вселенная? Как она возникла? Что таит она в себе, что приготовила для нас: «всемирный разум» и ответы на многочисленные вопросы или гибель человечества?

    Вопросы возникают нескончаемым потоком.

    Космос… Для обычного человека он кажется недосягаемым. Но, тем не менее, воздействие его на человека постоянно. По большому счету именно космическое пространство обеспечило те условия на Земле, которые привели к зарождению привычной для нас с вами жизни, а значит и появлению самого человека. Влияние космоса в значительной степени ощутимо и сейчас. «Частицы вселенной» доходят до нас сквозь защитный слой атмосферы и оказывают воздействие на самочувствие человека, его здоровье, на те процессы, которые протекают в его организме. Это для нас, живущих на земле, а что говорить о тех, кто осваивает космическое пространство.

    Меня заинтересовал такой вопрос: что такое космическое излучение и каково его влияние на человека?

    Я учусь в школе-интернате с первоначальной летной подготовкой. К нам приходят мальчишки, которые мечтают покорить небо. И первый шаг к осуществлению своей мечты они уже сделали, оставив стены родного дома и решившись прийти в эту школу, где изучаются основы полетов, конструкции летательных аппаратов, где у них есть возможность каждый день общаться с людьми, неоднократно поднимавшимися в небо. И пусть это пока только самолеты, которые не могут в полной мере преодолеть земное притяжение. Но ведь это только первый шаг. Судьба и жизненный путь любого человека начинается с маленького, робкого, неуверенного шажка ребенка. Кто знает, может быть, кто-то из них сделает второй шаг, третий… и будет осваивать космические летательные аппараты и поднимется к звездам в безграничные просторы Вселенной.

    Поэтому для нас этот вопрос достаточно актуален и интересен.

    1. Что такое космическое излучение.

    Существование космических лучей было обнаружено в начале ХХ века. В 1912 г. австралийский физик В. Гесс, поднимаясь на воздушном шаре, заметил, что разрядка электроскопа на больших высотах происходит значительно быстрее, чем на уровне моря. Стало ясным, что ионизация воздуха, которая снимала разряд с электроскопа, имеет внеземное происхождение. Первым высказал это предположение Милликен, и именно он дал этому явлению современное название – космическое излучение.

    В настоящее время установлено, что первичное космическое излучение состоит из стабильных частиц высоких энергий, летящих в самых различных направлениях. Интенсивность космического излучения в районе Солнечной системы составляет в среднем 2-4 частицы на 1см2 за 1с. Оно состоит из:

    • протонов – 91%

    • α-частиц – 6,6%

    • ядер других более тяжелых элементов – менее 1%

    • электронов – 1,5%

    • рентгеновских и гамма–лучей космического происхождения

    • солнечного излучения.

    Первичные комические частицы, летящие из мирового пространства, взаимодействуют с ядрами атомов верхних слоев атмосферы и образуют так называемые вторичные космические лучи. Интенсивность космических лучей вблизи магнитных полюсов Земли приблизительно в 1,5 раза больше, чем на экваторе.

    Среднее значение энергии космических частиц около 104 МэВ, а энергия отдельных частиц – 1012 МэВ и более.

    1. Возникновение космического излучения.

    По современным представлениям главным источником космического излучения высоких энергий являются взрывы сверхновых звезд. По данным, полученным с помощью принадлежащего NASA орбитального рентгеновского телескопа, были получены новые доказательства того, что значительный объем космического излучения, постоянно бомбардирующего Землю, произведен ударной волной, распространяющейся после взрыва сверхновой звезды, который был зарегистрирован еще в 1572 году. Судя по наблюдениям рентгеновской обсерватории «Чандра», останки сверхновой звезды продолжают разбегаться со скоростью более 10 миллионов км/ч, производя две ударные волны, сопровождаемые массированным выделением рентгеновского излучения. Причем, одна волна

    движется наружу, в межзвездный газ, а вторая –

    внутрь, к центру бывшей звезды. Можно также

    утверждать, что значительная доля энергии

    «внутренней» ударной волны уходит на ускорение атомных ядер до скоростей, близких к световым.

    Частицы высоких энергий приходят к нам из других Галактик. Таких энергий они могут достигнуть, ускоряясь в неоднородных магнитных полях Вселенной.

    Естественно, что источником космического излучения является и ближайшая к нам звезда – Солнце. Солнце периодически (во время вспышек) испускает солнечные космические лучи, которые состоят в основном из протонов и α-частиц, имеющих небольшую энергию.

    1. Воздействие космического излучения на человека и окружающую среду.

    Результаты исследования, проведенного сотрудниками университета Софии Антиполис в Ницце, показывают, что космическое излучение сыграло важнейшую роль в зарождении биологической жизни на Земле. Давно известно, что аминокислоты способны существовать в двух формах – левосторонней и правосторонней. Однако на Земле в основе всех биологических организмов, развившихся естественным образом, находятся только левосторонние аминокислоты. По мнению сотрудников университета, причину следует искать в космосе. Так называемое циркулярно-поляризованное космическое излучение разрушило правосторонние аминокислоты. Циркулярно-поляризованный свет – это форма излучения, поляризуемая космическими электромагнитными полями. Такое излучение образуется, когда частицы межзвездной пыли выстраиваются вдоль линий магнитных полей, пронизывающих всё окружающее пространство. На циркулярно-поляризованный свет приходится 17% всего космического излучения в любой точке космоса. В зависимости от стороны поляризации такой свет избирательно расщепляет один из типов аминокислот, что подтверждается экспериментом и результатами исследования двух метеоритов.

    Космическое излучение является одним из источников ионизирующего излучения на Земле.

    Природный радиационный фон за счет космического излучения на уровне моря составляет 0,32 мЗв в год (3,4 мкР в час). Космическое излучение составляет лишь 1/6 часть годовой эффективной эквивалентной дозы, получаемой населением. Уровни радиационного излучения неодинаковы для различных областей. Так Северный и Южный полюсы более, чем экваториальная зона, подвержены воздействию космических лучей, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы. Кроме того, чем выше от поверхности земли, тем интенсивнее космическое излучение. Так, проживая в горных районах и постоянно пользуясь воздушным транспортом, мы подвергаемся дополнительному риску облучения. Люди, живущие выше 2000 м над уровнем моря, получают из-за космических лучей эффективную эквивалентную дозу в несколько раз больше, чем те, кто живет на уровне моря. При подъеме с высоты 4000 м (максимальная высота проживания людей) до 12000 м (максимальная высота полета пассажирского транспорта) уровень облучения возрастает в 25 раз. А за 7,5 часа полета на обычном турбовинтовом самолете полученная доза облучения составляет примерно 50 мкЗв. Всего за счет использования воздушного транспорта население Земли получает в год дозу облучения около 10000 чел-Зв, что составляет на душу населения в мире в среднем около 1 мкЗв в год, а в Северной Америке примерно 10 мкЗв.

    Ионизирующее излучение отрицательно воздействует на здоровье человека, оно нарушает жизнедеятельность живых организмов:

    · обладая большой проникающей способностью, разрушает наиболее интенсивно делящиеся клетки организма: костного мозга, пищеварительного тракта и т. д.

    · вызывает изменения на генном уровне, что приводит в последствии к мутациям и возникновению наследственных заболеваний.

    · вызывает интенсивное деление клеток злокачественных новообразований, что приводит к возникновению раковых заболеваний.

    · приводит к изменениям в нервной системе и работе сердца.

    · угнетается половая функция.

    · вызывает нарушение зрения.

    Радиация из космоса влияет даже на зрение авиапилотов. Были изучены состояния зрения 445 мужчин в возрасте около 50 лет, из которых 79 были пилотами авиалайнеров. Статистика показала, что для профессиональных пилотов риск развития катаракты ядра хрусталика втрое выше, чем для представителей иных профессий, а тем более для космонавтов.

    Космическое излучение является одним из неблагоприятных факторов для организма космонавтов, значимость которого постоянно возрастает по мере увеличения дальности и продолжительности полетов. Когда человек оказывается за пределами атмосферы Земли, где бомбардировка галактическими лучами, а также солнечными космическими лучами намного сильнее: сквозь его тело за секунду может пронестись около 5 тысяч ионов, способных разрушить химические связи в организме и вызвать каскад вторичных частиц. Опасность радиационного воздействия ионизирующего излучения в низких дозах обусловлена увеличением рисков возникновения онкологических и наследственных заболеваний. Наибольшую опасность межгалактических лучей представляют тяжелые заряженные частицы.

    На основании медико-биологических исследований и предполагаемых уровней радиации, существующих в космосе, были определены предельно допустимые дозы радиации для космонавтов. Они составляют 980 бэр для ступней ног, голеностопных суставов и кистей рук, 700 бэр для кожного покрова, 200 бэр для кроветворных органов и 200 бэр для глаз. Результаты экспериментов показали, что в условиях невесомости влияние радиации усиливается. Если эти данные подтвердятся, то опасность космической радиации для человека, вероятно, окажется большей, чем предполагалось первоначально.

    Космические лучи способны оказывать влияние на погоду и климат Земли. Британские метеорологи доказали, что в периоды наибольшей активности космических лучей наблюдается пасмурная погода. Дело в том, что когда космические частицы врываются в атмосферу, они порождают широкие «ливни» заряженных и нейтральных частиц, которые могут провоцировать рост капелек в облаках и увеличение облачности.

    По исследованиям Института солнечно-земной физики в настоящее время наблюдается аномальный всплеск солнечной активности, причины которого неизвестны. Солнечная вспышка – это выброс энергии, сравнимый с взрывом нескольких тысяч водородных бомб. При особо сильных вспышках электромагнитное излучение, достигая Земли, изменяет магнитное поле планеты – словно встряхивает его, что сказывается на самочувствии метеочувствительных людей. Таких, по данным Всемирной организации здравоохранения, 15% населения планеты. Также при высокой солнечной активности интенсивнее начинает размножаться микрофлора и увеличивается предрасположенность человека ко многим инфекционным заболеваниям. Так, эпидемии гриппа начинаются за 2,3 года до максимума солнечной активности или спустя 2,3 года – после.

    Таким образом, мы видим, что даже небольшая часть космического излучения, которая доходит до нас сквозь атмосферу, может оказать заметное влияние на организм и здоровье человека, на процессы, протекающие в атмосфере. Одна из гипотез зарождения жизни на Земле, говорит о том, что космические частицы играют значительную роль в биологических и химических процессах на нашей планете.

    1. Средства защиты от космического излучения.

    Несмотря на то, что излучение Вселенной, возможно, и привело к зарождению жизни и появлению человека, для самого человека в чистом виде оно губительно.

    Жизненное пространство человека ограничено совсем незначительными

    расстояниями – это Земля и несколько километров над ее поверхностью. А далее – «враждебное» пространство.

    Но, поскольку человек не оставляет попыток проникнуть в просторы Вселенной, а все более интенсивно их осваивает, то возникла необходимость создания определенных средств защиты от негативного влияния космоса. Особое значение это имеет для космонавтов.

    Вопреки распространенному мнению, от атаки космических лучей нас защищает не магнитное поле Земли, а толстый слой атмосферы, где на каждый см2 поверхности приходится килограмм воздуха. Поэтому, влетев в атмосферу, космический протон в среднем преодолевает лишь 1/14 ее высоты. Космонавты же лишены такой защитной оболочки.

    Как показывают расчеты, свести риск радиационного поражения к нулю во время космического полета нельзя . Но можно его минимизировать. И здесь самое главное – пассивная защита космического корабля, т. е. его стенки.

    Чтобы уменьшить риск дозовых нагрузок от солнечных космических лучей , их толщина должна быть для легких сплавов не менее 3-4 см. Альтернативой металлам могли бы выступить пластмассы. Например, полиэтилен, тот самый из которого сделаны обычные сумки-пакеты, задерживает на 20% больше космических лучей, чем алюминий. Усиленный полиэтилен в 10 раз прочнее алюминия и при этом легче «крылатого металла».

    С защитой от галактических космических лучей , обладающих гигантскими энергиями, все гораздо сложнее. Предлагается несколько способов защиты от них космонавтов. Можно создать вокруг корабля слой защитного вещества подобного земной атмосфере. Например, если использовать воду, которая в любом случае необходима, то потребуется слой толщиной 5 м. При этом масса водного резервуара приблизится к 500 т, что очень много. Можно также использовать этилен – твердое вещество, для которого не нужны резервуары. Но даже тогда необходимая масса составила бы не менее 400 т. Можно использовать жидкий водород. Он блокирует космические лучи в 2,5 раза лучше, чем алюминий. Правда, ёмкости для топлива оказались бы громоздкими и тяжелыми.

    Была предложена другая схема защиты человека на орбите , которую можно назвать магнитной схемой . На заряженную частицу, движущуюся поперек магнитного поля, действует сила, направленная перпендикулярно направлению движения (сила Лоренца). В зависимости от конфигурации линий поля частица может отклониться почти в любую сторону или выйти на круговую орбиту, где она будет вращаться бесконечно. Для создания такого поля потребуются магниты на основе сверхпроводимости. Такая система будет иметь массу 9 т, она гораздо более легкая, чем защита веществом, но всё равно тяжела.

    Приверженцы еще одной идеи предлагают зарядить космический корабль электричеством , если напряжение внешней обшивки составит 2•109 В, то корабль сможет отразить все протоны космических лучей с энергиями до 2 ГэВ. Но электрическое поле при этом будет простираться до расстояния в десятки тысяч километров, и космический корабль будет стягивать к себе электроны из этого огромного объема. Они станут врезаться в обшивку с энергией 2 ГэВ и вести себя так же, как космические лучи.

    «Одежда» для космических прогулок космонавтов вне пределов космического корабля должна представлять собой целую спасательную систему:

    · должна создавать необходимую атмосферу для дыхания и поддержания давления;

    · должна обеспечивать отвод тепла, выделяемого телом человека;

    · она должна защищать от перегрева, если человек находится на солнечной стороне, и от охлаждения – если в тени; разница между ними составляет более 1000 С;

    · защищать от ослепления солнечной радиацией;

    · защищать от метеорного вещества;

    · должна позволять свободно перемещаться.

    Разработка космического скафандра началась в 1959 году. Существует несколько модификаций скафандров, они постоянно изменяются и усовершенствуются, в основном за счет использования новых, более совершенных материалов.

    Космический скафандр — это сложное и дорогостоящее устройство, и это легко понять, если ознакомиться с требованиями, предъявленными, например, к скафандру космонавтов корабля «Аполлон». Этот скафандр должен обеспечивать защиту космонавта от воздействия следующих факторов:

    Давление окружающей среды

    10-10 мм. рт. ст.

    Гравитация

    1/6 g

    Диапазон температур

    ± 150°С при потоке солнечной энергии 440 БТЕ/ч

    Поток микрометеоритов:




    первичный

    Скорость 29,8 км/сек, диаметр частиц 0,305 мм, плотность 0,498 г /см3

    вторичный

    Скорость 0,198 км/сек, диаметр частиц 2,388 мм, плотность 3,490 г/см3

    Электромагнитное излучение

    Интенсивное инфракрасное и ультрафиолетовое излучение, а также излучение и видимом диапазоне

    Строение полужесткого скафандра (для космоса)

    где

    1-6 мягкие части скафандра;

    2 - разъем пневмо- и гидромагистралей;

    3 - ручка для входного люка;

    4 - карабин страховочного фала;

    5,10 - гермоподшипники;

    7 - клапан резервного запаса кислорода;

    8 - светофильтр;

    9 - жесткий корпус;

    11 - заплечный ранец;

    12 - пульт контроля;

    13 - регулятор давления;

    14 - индикатор давления;

    15 - перчатка;

    16 - силовой шпангоут;

    17 - штепсельный разъем




    Структура мягкой части скафандра




    1 - наружная защитная ткань;

    2 - пакет слоев экранно- вакуумной изоляции;

    3 - силовые оболочки скафандра;

    4 - основная герметичная оболочка;

    5 - дублирующая;

    6 - подкладка;

    7 - трубки системы вентиляции;

    8 - вентиляционный зазор;

    9 - костюм водяного охлаждения;

    10 - трубки системы водяного охлаждения;

    11- нательное белье.




    Первый скафандр для выхода в открытый космос, который использовал А.Леонов, был жестким, неподатливым, весом около 100 кг, но современники его считали настоящим чудом техники и «машиной посложнее автомобиля».

    Таким образом, все предложения по защите космонавтов от космических лучей не надежны.

    1. Заключение.

    Собирая информацию о космическом излучении и его влиянии на окружающую среду, я убедилась, что всё в мире взаимосвязано, всё течет и изменяется, и мы постоянно ощущаем на себе отголоски далекого прошлого, начиная с момента образования Вселенной.

    Частицы, дошедшие до нас из других галактик, несут с собой информацию о далеких мирах. Эти «космические пришельцы» способны оказывать заметное влияние на природу и биологические процессы на нашей планете.

    В космосе все другое: Земля и небо, закаты и рассветы, температура и давление, скорости и расстояния. Многое в нем нам кажется непостижимым.

    Космос пока что нам не друг. Он противостоит человеку как чужая и враждебная сила, и каждый космонавт, отправляясь на орбиту, должен быть готов вступить в борьбу с ней. Это очень нелегко, и человек не всегда выходит победителем. Но чем дороже дается победа, тем она ценнее.

    Влияние космического пространства оценить достаточно сложно, с одной стороны оно привело к возникновению жизни и, в конечном счете, создало самого человека, с другой мы вынуждены от него защищаться. В данном случае, очевидно, необходимо найти компромисс, и постараться не разрушить то хрупкое равновесие, которое существует в настоящее время.

    Юрий Гагарин, впервые увидев Землю из космоса, воскликнул: « Какая же она маленькая!». Мы должны помнить эти слова и всеми силами беречь свою планету. Ведь даже в космос мы можем попасть только с Земли.

    7. Список литературы.

    1. Булдаков Л.А., Калистратова В.С. Радиоактивное излучение и здоровье, 2003.

    2. Левитан Е.П. Астрономия. – М.: Просвещение, 1994.

    3. Пригожин И.Н. Прошлое и будущее Вселенной. – М.: Знание, 1986.

    4. Хокинг С. Краткая история времени от большого взрыва до черных дыр. – СПб: Амфора, 2001.

    5. Энциклопедия для детей. Космонавтика. – М.: «Аванта+», 2004.

    6. http:// www. rol. ru/ news/ misc/ spacenews/ 00/12/25. htm


    написать администратору сайта