Главная страница

Кудрявцев Павел Степанович Курс истории физики


Скачать 7.55 Mb.
НазваниеКудрявцев Павел Степанович Курс истории физики
Дата22.02.2022
Размер7.55 Mb.
Формат файлаdocx
Имя файлаkurs_istorii_fiziki_rulit_net (1).docx
ТипКнига
#370373
страница15 из 86
1   ...   11   12   13   14   15   16   17   18   ...   86

Новая методология и новая организация науки. Бэкон и Декарт



К началу XVII столетия была подготовлена почва для быстрого развития физики. Эта подготовка заключалась прежде всего в осознании того факта, что преподающаяся в университетах физика не в состоянии была дать объяснение новым явлениям, обнаруженным в результате технических и географических открытий. Обращение к наследию античной науки позволило исправить ряд заблуждений и восстановить в правах утра ченные достижения, но этого было далеко не достаточно для дальнейшего движения вперед Самый метод опоры на авторитеты, какими бы высокими они ни казались, был несостоятельным. Нельзя было пойти дальше, не сломив слепое преклонение перед Аристотелем, царившее в университетах. Коперник, Бруно, Галилей вынуждены были каждый по-cвоему вступить в борьбу с аристотелевской традицией.

Это дело продолжали их современники и преемники.

Одним из современников Галилея, который особенно ясно осознал про тиворечие старой науки новым открытиям и необходимость опоры на новую методологию, был английский государственный деятель и философ Френсис Бэкон (1561–1626). Государственные дела, которые к тому же приходилось вершить в обстановке назревающей революции, не помешали Бэкону размышлять о научном прогрессе. Он задумал создать обширное сочинение под названием «Великое восстановление», из которого, однако, успел написать только одну часть под названием «Новый органон», вышедшую в 1620 г. В этом сочинении Бэкон указывает на неприглядное состояние «обычных», т. е. университетских, наук, на их бесплодие, в то время как в механических искусствах, т. е. технике, наблюдается интенсивное, непрерывное развитие: «Они, как будто восприняв какое-то удивительное дуновение, с каждым днем возрастают и совершенствуются». Это совершенствование беспредельно: «Скорее прекратятся и изменятся желания людей, чем эти искусства дойдут до предела своего совершенствования» Нам теперь видно, как глубоко прав был Бэкон, говоря так. Технический прогресс его времени не шел ни в какое сравнение с современным прогрессом техники, и все же Бэкон сумел увидеть в нем тенденцию непрерывного и беспредельного совершенствования техники.


Установив и резко подчеркнув несоответствие практики и теории, Бэкон указывает, что обращение к наследию древних не может устранить это несоответствие. «Было бы постыдно

для людей, – говорит Бэкон, – если бы границы умственного мира оставались в тесных пределах того, что было открыто древними, тогда как в наши времена неизмеримо расширились и приведены в известность пределы материального мира, т. е. земель, морей, звезд».

Бэкон вскрывает причины плачевного состояния наук, важнейшими из которых, по его мнению, являются неправильная цель и неправильный метод науки, противодействие

научному прогрессу, оказываемое богословием и схоластикой: «По теперешнему положению дел условия для разговора о природе стали более жесткими и опасными по причине учения и метода схоластов», писал Бэкон, добавив, что строптивая и колючая философия Аристотеля смешалась более чем следовало с религией. Бэкон полагал, что цель науки заключается в наделении человеческой жизни «новыми открытиями и благами», а не в бесполезных умствованиях схоластов. Схоластика и схоластическое преподавание препятствуют научному прогрессу: «В науках же и искусствах, как в рудниках, все должно шуметь новыми работами и дальнейшим продвижением вперед».

Что же нужно сделать для этого? Аля этого, по мнению Бэкона, надо помочь науке правильным методом и правильной организацией. Человеческий ум, по Бэкону, осаждают

«Призраки» свойственные человеческому разуму и являющиеся источ-ником заблуждения: ум склонен лег-ко обобщать единичные факты и приходить к выводам, не соответствующим действительности, он нелегко расстается со сложившимися убеждениями, ему присуща некоторая инерция.

Он более активно реагирует на эффекты, на то, «что сразу и внезапно может его

поразить».

Далее, человек «скорее верит в истинность того, что предпочитает». Познанию истины мешает также несовершенство чувств, благодаря которому «остаются скрытыми тонкие

перемещения частиц в телах». Все это обусловлено самой человеческой природой и названо Бэконом «призраками Рода». «Призраки Пещеры» обусловлены индивидуальными склонностями умов. Одни склонны к почитанию древности, другие к восприятию нового и т. п. «Призраки Рынка» порождены обычным словоупотреблением, общественным мнением. И наконец, «призраки Театра» обусловлены господствующими теориями, предвзятыми мнениями, суеверием. Из существования таких «призраков», по Бэкону, и вытекают серьезные трудности мыслительной работы, трудности познания природы Правильный метод должен помочь преодолению этих «призраков», делу отыскания истины.


Бэкон разделяет ученых своего времени на два класса: эмпириков и догматиков. Эмпирики, подобно муравьям, тащат в свою муравьиную кучу всевозможные факты,

догматики же, подобно пауку, ткут ткань из самих себя. Надо, по Бэкону, в науке работать как пчела; извлекать материал из внешнего мира и перерабатывать его рационально.

В основе метода Бэкона лежит опыт. Наука должна опираться на опыт, на практику, строя из них выводы, «причины и аксиомы» методом индукции (наведения), т. е. переходя от

частных фактов к обобщениям. Эти обобщения вновь проверяются опытом и практикой.

«Наш путь и наш метод... состоит в следующем: мы извлекаем не практику из практики и опыт из опытов (как эмпирики), а причины и аксиомы из практики и опытов и из причин и аксиом – снова практику и опыты, как верные истолкователи природы». Научные истины проверяются, таким образом, опытом и практикой и, в свою очередь, выводятся из них.

Индуктивный метод сыграл огромную роль в развитии естествознания. Долгое время естественные науки: физику, химию, астрономию называли индуктивными науками,

противопоставляя их гуманитарным наукам и чистой математике. Но уже сам Бэкон считает, что индукция неполна и несовершенна без теоретического анализа, без использования математики: «Лучше же всего продвигается вперед естественное исследование, когда физическое завершается в математическом». Он стоит на точке зрения атомистики, утверждая, что «каждое естественное действие совершается при посредстве самых малых частиц». Прекрасную характеристику философии и метода Бэкона дал Маркс: «Настоящий родоначальник английского материализма и всей современной экспериментирующей науки

–это Бэкон, Естествознание является в его глазах истинной наукой, а физика, опирающаяся на чувственный опыт, – важнейшей частью естествознания. Анаксагор с его гомеомериями и Демокрит с его атомами часто приводятся им как авторитеты. Согласно его учению, чувства непогрешимы и состав-ляют источник всякого знания. Наука есть опытная наука и состоит в применении рационального метода к чувственным данным. Индукция, анализ, сравнение, наблюдение, эксперимент суть главные условия рационального метода».(Маркс К. и Энгельсф. Святое семейство, или Критика критической критики. Против Бруно Бауэра икомпании.Маркс К., Энгельсф. Соч., 2-еизд, т.2, с. 142.)

Существенно, что Бэкон хорошо понимал необходимость финансирования науки и организации научных учреждений. В своем неоконченном фантастическом произведении

«Новая Атлантида» он описывает такое учреждение – «Дом Соломона» – и его огромное значение для рационально построенного общества.

И действительно, потребность научного развития вызвала к жизни новые организации в виде научных обществ и академий. Первая такая академия – флорентийская академия

опыта была организована в 1657 г. во Флоренции учениками и последователями Галилея.

Флорентийские академики (их было всего девять) совместно ставили и обсуждали опыты, описанные позднее в сборнике трудов академии, вышедшем в 1667 г. В этом же году покровитель академии брат герцога Тосканского Леопольд Медичи по требованию папских кругов вынужден был закрыть академию. Так церковь уничтожила наследие Галилея, нанеся

тем самым огромный вред итальянской науке, уступившей лидерство в научном соревновании другим странам.

Еще раньше, чем во Флоренции, начиная с 1645 г., в Лондоне стал собираться кружок любителей естественных наук. В Англии в те годы бушевала гражданская война, участники кружка по мере развития революционных событий разделились: одни остались в Лондоне,

другие собирались в Оксфорде. После реставрации кружок вновь начал собираться в Лондоне и оформился организационно, получив формальный королевский статут 28 ноября 1660 г. как Лондонское Королевское общество. Общество было основано «для преуспеяния экспериментальной философии» под девизом «ничего на слово» и существует и поныне как высшее научное учреждение Англии (Английская Академия наук).

Аналогичные собрания в сороковых годах проходили в Париже. Позднее министр короля Людовика XIV Кольбер внес предложение об открытии Академии наук в Париже, которая и была утверждена в 1666 г. Затем последовали организации научных обществ и академий в других государствах. Петр I во время своего путешествия по Европе знакомился с английским королевским обществом, президентом которого в то время был Ньютон. Уже

будучи императором, Петр I посетил Париж и Парижскую Академию наук. Он хорошо понимал необходимость создания в России высшего научного учреждения. Он вел длительные переговоры с учеными Европы об организации академии и 28 января 1724 г. подписал указ об учреждении Петербургской Академии наук. Она начала свою работу в 1725 г., уже после смерти Петра, когда в Петербург приехали первые академики.
Рис.7.'Началафилософии'Декарта.Титульныйлист

Научные общества и академии были новыми центрами наук, возникшими в противовес старым университетам, все еще находившимся в плену схоластики. Однако

перемены коснулись и университетов, которые постепенно втягивались в научное движение. Достаточно сказать, что в Кембриджском университете с 1669 по 1695 г. был профессором

Исаак Ньютон.

Развитие науки потребовало развития научной информации. Обычными формами такой информации были личное общение и переписка (и, конечно, книги). В эпоху Галилея жил ученый монах Мерсенн (1588–1648), который известен своими открытиями в акустике.

Но главным делом его жизни была организация взаимной научной информации ученых посредством переписки, которую он поддерживал со всеми ведущими учеными своего времени, служа своеобразным центром связи между ними. Мерсенна прозвали

«человек-журнал». Но человека не стало, да и развитие науки стало таким, что один гений не мог охватить всех научных новостей, и вместо «человека-журнала» появились научные журналы. С 1665 г. начали выходить труды Лондонского Королевского общества (Philosophical Transactions), затем труды Парижской Академии наук. С 1682 г. в Лейпциге стал выходить научный журнал «Acta Eruditorum». Научная периодика и поныне является основной формой научной информации.

Таким образом, развитие науки подтверждало идеи Бэкона: опытное естествознание стало фактом общественного сознания, и были созданы новые организационные формы развития науки. Это, конечно, не означает, что наука развивалась по предначертаниям Бэкона. Просто Бэкон, как передовой человек своего времени, осознал значение науки для

общественного прогресса, ее роль в развитии техники, причины неудач схоластической университетской науки и правильно понял роль опыта и практики в развитии естествознания. В XVII в. наука становится признанной общественной силой, способной помогать развитию общественного производства. Наука из служанки богословия превращается в самостоятельную форму общественного сознания.

Таким образом, мы можем говорить о происшедшей в XVII в. научной революции, в результате которой возникла классическая физика не только физика) в той форме и с теми

методами познания, какой мы ее сегодня знаем. Говоря о методе познания, следует напомнить, что наряду с индуктивным в современной науке находит широкое применение дедуктивный метод, когда из небольшого числа общих принципов выводятся и прослеживаются в деталях частные следствия. Так, классическая механика развивается из законов Ньютона или из вариационных принципов динамики, макроскопическая электродинамика – из уравнений Максвелла и т. д. Метод дедукции был обоснован вскоре после Бэкона французским философом Рене Декартом (1596–1650) в книге «Рассуждение о методе», которая вышла в свет в 1637 г.

Следует, однако, подчеркнуть, что было бы грубым упрощением считать Декарта основателем дедуктивного метода, а Бэкона–основателем индуктивного. Оба метода

зародились еще в Древней Греции, и Бэкон и Декарт лишь развили их применительно к естествознанию. При этом ни Бэкон не отрицал значения дедукции, ни Декарт не отрицал значения опыта и индукции. Научный метод основан на диалектическом сочетании индукции и дедукции, и это понимали оба великих философа. Но Бэкон подчеркивал ведущую роль опыта и индукции, Декарт же – логического анализа и правильных умозаключений. Он полагал, что в основу этих умозаключений должны был положены ясные и простые прин ципы и строгая логическая последовательность выводов. Математика в методе Декарта играет первостепенную роль.


Рис.8.СистемамирапоДекарту.Рисунокиз'Началфилософии'

Он писал: «Те длинные цепи выводов, сплошь простых и легких, которыми обычно пользуются геометры, чтобы дойти до своих наиболее трудных доказательств, дали мне повод представить себе, что и все вещи, которые могут стать предметом знаний людей, находятся между собой в такой же последовательности. Таким образом, если остерегаться принимать за истинное что-либо, что таковым не является, и всегда наблюдать порядок, в

каком следует выводить одно из другого, то не может существовать истин ни столь отдаленных, чтобы они не были недостижимы, ни столь сокровенных, чтобы нельзя было их раскрыть».

Таким образом, согласно Декарту, применяя метод геометров, т. е. ма-темагиков, можно добиться в изучении природы огромных успехов. Для этого метода нет

недостижимых истин, «столь сокровенных, чтобы нельзя было их раскрыть». Эта вера в мошь математического метода весьма характерна для Декарта, и он особенно ценил Галилея за то, что тот «старается изучать вопросы с помощью математического рассуждения».

Но основной проблемой физики XVII в. были законы движения. Как применить математику к движению? И здесь Декарту принадлежит решающее открытие: он ввел в

математику переменные величины, установил соответствие между геометрическими образами и алгебраическими уравнениями; Декарт положил начало аналитической геометрии. Здесь он «первые применил свой метод: «Приняв во внимание, что среди всех, искавших истину в науках, только математикам удалось найти некоторые доказательства, т.е. некоторые точные и очевидные соображения, я не сомневался, что и мне следовало начать с того, что было ими обследовано» Результатом такого начала явилась «геометрия», приложенная к «Рассуждению о методе». Другими приложениями являются «Диоптрика» и

«Метеоры».

Когда идея или открытие назревает, она возникает почти одновременно в нескольких головах. Так было и с идеей переменной величины. Галилей в своих механических

исследованиях хорошо понимал необходимость оперирования переменными величинами. Идея мгновенной скорости, меняющейся от момента к моменту, была им освоена во всей полноте. В «Диалоге» он описывает, как свободно падающее тело проходит через все ступени скорости, начиная с нулевой. Собеседники не сразу могут принять эту идею, им трудно понять, что падающее ядро обладает вначале такой скоростью, что, сохранись она

неизменной, ядро не достигло бы Земли и за день. Сальвиати подхватывает эту мысль, усиливает ее. «Можете сказать в год, в десять, в тысячу лет»

В «Беседах» обсуждение переменной скорости падающего тела занимает видное место. Сагредо вновь возвращается к своей Мысли: «Надлежит признать, что для

промежутков времени, все более и более близких к моменту выхода тела из состояния покоя, мы придем к столь медленному движению, что при сохранении постоянства скорости тело не пройдет мили ни в час, ни в день, ни в год, ни даже в тысячу лет; даже в большее время оно не продвинется и на толщину пальца – явление, которое весьма трудно себе представить, особенно когда наши чувства показывают, что тяжелое падающее тело сразу же приобретает большую скорость». Сальвиати подробно разъясняет это обстоятельство и, в частности, указывает, что при бросании тела вверх оно постоянно уменьшает свою скорость до полной остановки. Симпличио возражает в духе апорий Зенона, что невозможно исчерпать бесконечное количество степеней медленности и, таким образом, брошенное вверх тело никогда не останавливается. Возражение Симпличио Сальвиати парирует чрезвычайно сильно: «Это случилось бы, синьор Симпличио, если бы тело двигалось с каждой степенью скорости некоторое определенное время, но оно только проходит через эти степени, не задерживаясь более чем на мгновение, а так как в каждом, даже самом малом, промежутке времени содержится множество мгновений, то их число является достаточным для соответствия бесконечному множеству степеней скорости».

Как видно из этого опыта, Галилей отчетливо представляет текучесть переменной величины, которая проходит последовательно все значения и не задерживается «более чем на

мгновение» Мгновение – бесконечно малая величина, число мгновений в небольшом промежутке времени бесконечно велико и взаимно однозначно соответствует числу значений переменной величины. Галилей владеет идеей взаимно однозначного соответствия бесконечных множеств. Это видно, например, из его утверждения, что всех членов натурального ряда чисел «столько же», сколько полных квадратов этих чисел.

Галилей независимо от Декарта пришел к идее представления переменной величины линией. Этой идеей он пользовался для вывода закона пути равноускоренного движения.

Онразработал остроумный метод измерения конечной скорости падающего тела по глубине ямки, оставленной в мягкой пластине упавшим телом Установив, что эта глубина пропорциональна высоте падения, Галилей пришел сначала к ошибочному выводу, что скорость падающего тела пропорциональна пройденному пути Но он скоро понял свою ошибку и установил, что в равноускоренном движении скорость пропорциональна времени Изображая время отрезками вертикальной прямой, он изображал скорость, полученную телом в конце данного промежутка времени, отрезком перпендикуляра к оси времен, восстановленного в конце соответствующего отрезка времени.

Таким образом, Галилей впервые изо бразил зависимость скорости от времени графически, и его график отличается от принятого ныне только тем, что время мы

откладываем теперь по горизонталь ной оси, а скорость – по вертикальной, что, конечно, совершенно несуществен но Путь, пройденный телом за данный промежуток времени, Галилеи определяет по графику, суммируя все отрезки скорости, т е находит площадь фигуры (в случае равномерного движения – прямоугольника, в случае равноускоренного движения – прямоугольного треугольника), образованной графиком скорости, осью времен и начальным и конечным отрезками скорости По существу он выполняет операцию интегрирования.

Ученики Галиаея Кавальери и Торри-челли также внесли свой вклад в основание теории бесконечно малых Дело создания основ математики переменных величин было

завершено Ньютоном и Лейбницем.

Вернемся, однако, к Декарту В1644 г Декарт издал обширное сочинение под названием «Начала философии» В него вошли части сочинения Декарта о мире (космосе), которое он намеревался издать еще в 1633 г Услышав об осуждении Галилея, он отложил издание своего сочинения и только спустя одиннадцать лет обнародовал его в расширенном

и переработанном виде В этом сочинении он изложил грандиозную программу создания теории природы, руководствуясь своим методологическим правилом брать за основу наиболее простые и ясные положения Еще в «Рассуждении о методе» Декарт подверг анализу всевозможные исходные положения, сомневаясь в справедливости любого из них, в том числе и в положении «Я существую» Однако в акте мышления сомнение невозможно, ибо наше сомнение уже есть мысль Отсюда знаменитое положение Декарта «Я мыслю, следовательно, существую» Чтобы обезопасить свое учение от нападок церковников, Декарт говорит о существовании бога и внешнего мира, созданного богом Но обмануть церковников не удается, они распознали материалистическую сущность системы Декарта, и ученому под конец жизни пришлось искать убежища в Швеции, где он и умер Верный своему методу, Декарт ищет в материальном субстрате самое основное и простое и находит его в протяженности.

Материя Декарта – это чистая протяженность, материальное пространство, заполняющее всю безмерную длину, ширину и глубину Вселенной Части материи находятся

в непрерывном движении, взаимодействуя друг с другом при контакте.

Взаимодействие материальных частиц подчиняется основным законам или правилам

«Первое правило заключается в следующем каждая частица материи в отдельности продолжает находиться в одном и том же состоянии до тех пор, пока столкновение с другими частицами не вынуждает ее изменить это состояние»

«В качестве второго правила я предполагаю следующее если одно тело сталкивается с другим, оно не может сообщить ему никакого другого движения, кроме того, которое

потеряет во время этого столкиове ния, как не может и отнять у него больше, чем одновременно приобрести себе»

«В виде третьего правила я прибавлю, что хотя при движении тела его путь чаще всего представляется в форме кривой линии и что хотя невозможно произвести ни одного

движения, которое не было бы в каком-либо виде круговым, тем не менее каждая из частиц тела по отдельности всегда стремится продолжать его по прямой линии»

В этих «правилах» обычно усматривают формулировку закона инерции и закона сохранения количества движения В отличие от Галилея Декарт отвлекается от действия

тяготения, которое он, между прочим, также сводит к движению и взаимодействию частиц, и упоминает о направлении инерционного движения по прямой Однако его формулировка еще отличается от ньютоновской, он говорит не о состоянии равномерного и прямолинейного движения, а вообще о состоянии, не разъясняя подробно содержания его термина.

Из всего содержания «Начал» вид но, что состояние частей материи характеризуется их величиной («количество материи»), формой, скоростью движения и способностью изменять эту скорость под воздействием внешних частиц Можно отождествить эту

способность с инерцией, и тогда в одном из писем Декарта мы встречаем очень интересное утверждение «Можно утверждать с достоверностью, что камень неодинаково расположен к принятию нового движения или к увеличению скорости, когда он движется очень скоро и когда он движется очень медленно».

Другими словами: Декарт утверждает, что инерция тела зависит от его скорости.

Известный русский физик Н. А. Умов, приводя в 1896 г. эту выдержку, подчеркнул важность утверждения Декарта и высказал мысль, что при скоростях, близких к скорости света, масса тела должна возрастать. Как известно, закон возрастания массы со скоростью был установлен в теории относительности Эйнштейном, а для электромагнитной инерции – Д. Д. Томсоном.

В письмах Декарта встречается формулировка закона инерции, уже почти текстуально совпадающая с ньютоновской: «Полагаю, что природа движения такова, что, если тело

пришло в движение, уже этого достаточно, чтобы оно его продолжало с той же скоростью и в направлении той же прямой линии, пока оно не будет остановлено или отклонено

какой-либо другой причиной».

Этот принцип сохранения скорости по модулю и направлению тем более интересен у

Декарта, что, по его представлению, пустоты в мире нет и всякое движение является циклическим: одна часть материи занимает место другой, эта – предыдущей и т. д. В результате вся Вселенная пронизана вихревыми движениями материи. Движение во Вселенной вечно, так же как и сама материя (хотя Декарт и пишет о сотворении материи и движения богом, но в дальнейшем бог устраняется и природа действует по собственным законам), и все явления в мире сводятся к движениям частиц материи Вначале эти движения были хаотическими и беспорядочными, в результате этих движений частицы дробились и сортировались.

По Декарту, существуют три сорта частиц (три элемента): частицы земли, воздуха (неба), огня. Наиболее крупные частицы– это частицы земли. Они погружены в среду из частиц неба, в которые вкраплены также частицы огня, образующие Солнце. Вихревые

движения круглых подвижных частиц «неба» увлекают в своем движении планеты, состоящие из элементов земли. Вся Вселенная разбита на такие вихревые области, которые можно рассматривать как предшественники современных галактик. Такова космогоническая гипотеза Декарта.

В физике Декарта нет места силам, тем более силам, действующим на расстоянии через пустоту. Все явления мира сводятся к движениям и взаимодействию соприкасающихся частиц. Такое физическое воззрение получило в истории науки название картезианского, от

латинского произношения имени Декар та – Картезий. Картезианское воззрение сыграло огромную роль в эволюции физики и, хотя и в сильно измененной форме, сохранилось до нашего времени. Все попытки построить единую теорию поля и вещества по существу повторяют на новой основе попытку Декарта построить физическую картину мира с непрерывной материей и сохраняющимся механическим движением.

1   ...   11   12   13   14   15   16   17   18   ...   86


написать администратору сайта