Кудрявцев Павел Степанович Курс истории физики
Скачать 7.55 Mb.
|
Механика XIII в.«Начала» Ньютона, как уже было сказано, были изложены тяжелым геометрическим языком. Доказательства механических предложений были громоздки и сложны. В XVIII в. в механику проникают методы дифференциального и интегрального исчисления, которые не решился применять в своем основном труде один из создателей этих методов. В превращении механики в аналитическую механику сыграла существенную роль плеяда блестящих математиков и механиков XVIII в., в особенности петербургский академик Леонард Эйлер и парижский академик Жозеф Луи Лагранж (1736–1813). Отметим, что и Эйлер и Л агранж в разное время работали в Берлинской Академии наук, куда Лагранж был избран в 1759 г. по представлению Эйлера. После отъезда Эйлера в Россию Лагранж переехал в Берлин, заняв пост Эйлера. Лагранж вернулся во францию спустя пять лет после смерти Эйлера, накануне Великой французской революции. «Механика» Эйлера вышла в Петербурге в 1736 г. в двух больших томах. Второе его основное сочинение по механике, которое рассматривается как третий том «Механики», вышло в 1765 г. в Ростоке и Грейфсфальде под названием «Теория движения твердых тел». Мы знаем, что Ньютон озаглавил свое сочинение «Началами натуральной философии», механикой в его время считалось учение о равновесии простых машин. Эйлер же впервые назвал механику наукой о движении, и полный перевод названия его труда в 1736 г. гласит: «Механика, или Наука о движении, изложенная аналитически». В предисловии к этому труду Эйлер указывал, что под механикой обычно понимают науку о равновесии сил, и предлагал дать этой науке название «статика», а «науке о движении придать имя механики». И. Бернулли возражал против такого словоупотребления, предлагая для науки о движении сохранить термин, введенный Лейбницем,– «динамика». Эйлер в предисловии ссылается на сочинения своих предшественников: французского математика и механика Вариньона (1654–1722), сочинение которого «Новая механика или статика» вышло в 1725 г. после смерти автора; Христиана Вольфа (1679–1754), в сочинении которого «Начала всех математических наук» (1710) в разделе «Элементы механики» рассмотрены вместе и статика и механика; и наконец, швейцарского математика и петербургского академика Германа (1678–1733), сочинение которого «форономия, или О силах и движениях твердых и жидких тел» было опубликовано в 1716 г. Он называет также и «Начала» Ньютона, благодаря которым «наука о движении получила наибольшее развитие». Эйлер отмечает, что «форономия» является единственным известным ему сочинением, в котором учение о движении было разобрано «совершенно отдельно». Но он указывает, что работы Германа и Ньютона изложены «по обычаю древних при помощи синтетических геометрических доказательств» без применения анализа, «благодаря которому только и можно достигнуть полного понимания этих вещей». Эйлер сознается, что после изучения «форономии» и «Начал» он, как ему казалось, «достаточно ясно понял решение многих задач, однако задач, чуть отступающих от них, ...уже решить не мог». Тогда он попытался «выделить анализ из этого синтетического метода и те же предложения для собственной пользы проработать аналитически». Эйлер отмечает, что благодаря этому он «значительно лучше понял суть вопроса». «Затем таким же образом я исследовал и другие работы, относящиеся к этой науке, разбросанные по многим местам, и лично для себя я изложил их планомерным и однообразным методом и привел их в удобный порядок. При этих занятиях я не только встретился с целым рядом вопросов, ранее совершенно незатронутых, которые я удачно разрешил, но и нашел много новых методов, благодаря которым не только механика, но и сам анализ, по-видимому, в значительной степени обогатился. Таким образом и возникло это сочинение о движении, в котором я изложил аналитическим методом и в удобном порядке как то, что я нашел у другие в их работах о движении, так и то, что я получил в результате своих размышлений». Так откровенно и просто Эйлер рассказал историю создания своей «Механики» и вместе с тем показал путь перехода от громоздких, геометрических методов к изящным, аналитическим. Говоря о конкретном содержании «Механики» Эйлера, следует отметить, что она появилась в те годы, когда на континенте Европы начали распространяться идеи Ньютона и борьба картезианцев и ньютонианцев была в самом разгаре За пять лет до выхода эйлеровской «Механики» Вольтер смог четко отличить географические границы ньюто-нианства и картезианства: Лондон был центром ньютонианства, а Париж – картезианства. Имея в виду этот факт, Вольтер писал в «философских письмах» (1731): «Когда француз приезжает в Лондон, то находит здесь большую разницу как в философии, так и во всем другом. В Париже, из которого он приехал, думают, что мир наполнен материей, здесь же ему говорят, что он совершенно пуст; в Париже вы видите, что вся вселенная состоит из вихрей тонкой материи, в Лондоне же вы не видите ничего подобного; во франции давление Луны производит приливы и отливы моря, в Англии же говорят, что это само море тяготеет к Луне, так что когда парижане получают от Луны прилив, то лондонские джентльмены думают, что они должны иметь отлив... У вас картезианцы говорят, что все совершается вследствие давления, и этого мы не понимаем; здесь же нью-тонианцы говорят, что все совершается вследствие притяжения, которое мы не лучше понимаем. В Париже вы воображаете, что Земля у полюсов несколько удлинена, как яйцо, тогда как в Лондоне представляют ее сплюснутой, как дыня». Воззрения картезианцев, казалось, подтверждались измерениями французских астрономов: Пикара (1620– 1682) и Ж. Кассини (1677-1756). Дискуссии о форме Земли, о системе мира Декарта и Ньютона достигли широкого размаха. Только в 1733 г. вышло шесть работ, посвященных вопросу о фигуре Земли. В 1735 г. Парижская академия наук организовала экспедицию в Перу для измерения дуги меридиана в экваториальной зоне. Летом 1736 г. академия послала экспедицию в Лапландию под руководством академика Пьера Мопертюи (1698–1759). В состав этой экспедиции входил и молодой математик Алексис Клод Клеро (1713–1765). Экспедиция вернулась через 15 месяцев, в сентябре 1737 г., обеспечив победу теории Ньютона. Вышедший в 1743 г. классический труд Клеро «Теория фигуры Земли», где автор поставил труднейшую проблему определения фигуры равновесия вращающейся жидкости, был развитием теории Ньютона. Клеро предположил, что масса планеты первоначально была жидкой, ее частицы взаимодействовали друг с другом по ньютоновскому закону тяготения и вся масса медленно вращалась вокруг неподвижной оси. Полученные результаты имели фундаментальное значение для высшей геодезии, а сама теория Клеро получила дальнейшее развитие в трудах выдающихся математиков, начиная от современников Клеро и кончая классическими исследованиями выдающегося русского математика и механика А.М.Ляпунова. Важным вкладом в развитие теории Ньютона были еще две работы Клеро, представленные им на премию, объявленную Петербургской Академией наук. Первая, премированная Петербургской Академией наук в 1751 г., работа Клеро называлась «Теория движения Луны, выведенная единственно из начала притяжения, обратно пропорционального квадратам расстояния». Труд Клеро был напечатан в Петербурге в 1752 г. Весьма замечательна вторая работа Клеро, получившая премию Петербургской Академии наук в 1762 г. Эта работа была посвящена анализу движения кометы Галлея. Галлей предсказал ее возвращение в 1758 г., однако в этот год комета не появилась. Клеро предпринял новый расчет времени возвращения кометы, учитывая возмущающее действие на нее масс Юпитера и Сатурна, и предсказал ее появление весной 1759 г., допустив ошибку всего в 19 дней. «Исполнившееся предсказание Клеро, – говорил французский академик Араго,– произвело на общество более действия, нежели все хитрые доказательства философа Бейля». А Пьер Бейль (1647– 1706), автор «Исторического и критического словаря», оказал бесспорно большое влияние на умы просветителей XVIII в. К.Маркс называл его отцом французского просвещения. Борьба за теорию Ньютона развертывалась на самых разнообразных участках науки и жизни. Теория проверялась в экспедициях, в астрономических наблюдениях, в вычислениях математиков, обсуждалась в философских и научных дискуссиях, излагалась в учебниках и монографиях. «Механика» Эйлера и была первым систематическим курсом ньютоновской механики. Ее страницы еще отражали дискуссии нью-тонианцев и картезианцев. Шла ли речь о пустом абсолютном пространстве Ньютона или о материальной протяженности Декарта, о силах, существующих «сами по себе», или только о взаимодействующих реальных телах– обо всем этом картезианцы и ньюто-нианцы имели свои точки зрения. Эйлеру необходимо было присоединиться к той или другой. Для математических расчетов точка зрения ньюто-нианцев была более подходящей, и Эйлер ее принял. Так, определив движение как «перемещение тела из того места, которое оно занимало, в другое место», Эйлер определил понятие места следующим образом: «Место есть часть неизмеримого или бесконечного пространства, в котором находится весь мир. Принятое в этом смысле место обычно называют абсолютным...» Это определение совершенно в духе ньютоновского абсолютного пространства, «вместилища» всего мира. Но Эйлер подчеркивает, что такое пространство вводится лишь для удобства математического описания. Он говорит: «То, что мы говорили здесь о безграничном и неизмеримом пространстве, должно рассматриваться как чисто математическое выражение... Ведь мы не утверждаем, что есть подобного рода бесконечное пространство... мы требуем только одного, чтобы тот, кто хочет исследовать вопрос об абсолютном движении и абсолютном покое, представил себе такое пространство и отсюда уже судил о состоянии покоя или движения тел». Итак, Эйлер рассматривает ньютоновское абсолютное пространство как удобную математическую абстракцию, полезную для описания механического движения тел. Из других его трудов, в частности из известной научно-популярной книги «Письма к немецкой принцессе», видно, что в его физических воззрениях картезианская концепция непрерывной материальной среды занимала важное место. Эйлер следует Ньютону и в определении основных понятий динамики – силы и массы. «Сила есть то усилие, которое переводит тело из состояния покоя в состояние движения или видоизменяет его движение». Отсюда в качестве следствия получается закон инерции: «Всякое тело, предоставленное самому себе, или пребывает в покое, или движется равномерно и прямолинейно». Эйлер заранее предупреждает читателя, что он под словами «движение» и «покой» всегда подразумевает абсолютные движение и покой. Таким образом, в приведенной формулировке закона инерции следует иметь в виду движение и покой, отнесенные к абсолютному пространству. Эйлер неоднократно обращался к вопросу об источнике сил и считал, что таким источником является движение непроницаемых инертных тел. Основой динамики Эйлера служит теорема: «Сила q на точку b имеет то же действие, какое сила р имеет на точку а, если q/p=b/a «Это предложение, – указывает далее Эйлер, – заключает в себе основы для измерения силы инерции, так как на нем основывается все учение о том, как нужно учитывать материю или массу тел в механике. Следует обращать внимание на число точек, составляющих тело, которое должно быть приведено в движение, и масса тела должна быть принята пропорциональной этому числу. Эти точки надо считать равными между собой, но не так, что они равно малы, но так, что на них одна и та же сила производит равные действия. Если мы представим себе, что вся материя мира разделена на подобного рода равные точки или элементы, то количество материи по необходимости надо будет измерять числом точек, из которых оно составлено. В следующем предложении я покажу, что сила инерции пропорциональна этому числу точек или количеству материи». Действительно, несколько ниже Эйлер формулирует предложение: «Силы инерции каждого тела пропорциональны количеству материи, из которой оно со стоит». Эйлер раскрывает знаменитое ньютоновское определение массы, вскрывает его атомистическую сущность и, подобно Ньютону, поясняет далее, что масса может быть измерена пропорциональным ей весом. Когда Эйлер в приведенном выше основном предложении о пропорциональности сил массам употребляет выражение «точка b», «точка а», то это означает: «точка массы b», «точка массы а».( |