Главная страница

Кудрявцев Павел Степанович Курс истории физики


Скачать 7.55 Mb.
НазваниеКудрявцев Павел Степанович Курс истории физики
Дата22.02.2022
Размер7.55 Mb.
Формат файлаdocx
Имя файлаkurs_istorii_fiziki_rulit_net (1).docx
ТипКнига
#370373
страница31 из 86
1   ...   27   28   29   30   31   32   33   34   ...   86

которая сегодня вошла во все учебники. Помимо интерференционного опыта с зеркалами, Френель описывает опыт с бипризмой. В этом же мемуаре он дает новую

формулировку принципа Гюйгенса и развивает метод зон, ныне также вошедший во все учебники. Мемуар заполнен таблицами расчетов различных случаев дифракции. Особо автор разбирает дифракцию от круглого экрана и круглого отверстия, используя свой метод зон.

Мемуар заканчивается объяснением преломления света по волновой теории.

Теперь оставалось подчинить волновой теории явления поляризации и хроматической поляризации. Изучая интерференцию поляризованных лучей, Френель еще в 1816 г. отмечал, что волновая теория «пока что не дала объяснения явлению поляризации», и добавлял, что,

по-видимому, для такого объяснения она должна быть видоизменена: «Эта модификация света состоит в попереч-ности световых волн». Однако предположение о поперечности световых волн, как отмечал Френель, «настолько противоречило принятым представлениям о природе колебания упругих жидкостей, что прошло немало времени, прежде чем я принял его окончательно».

Юнг, «более смелый в своих предположениях», сообщил эту идею в письме к Араго от 12 января 1817 г. Но Френель, который пришел к идее поперечности световых волн раньше Юнга, не торопился публиковать ее. Он хорошо понимал, в какое противоречие вступает эта

гипотеза с механикой упругих сред. Только тщательные эксперименты и прежде всего установленный ими Араго факт, что лучи, первоначально поляризованные во взаимно перпендикулярных плоскостях, не интернируют, даже если их привести к одной плоскости поляризации, заставили его принять гипотезу поперечности световых волн.

Френель, высказав идею, ад поперечные колебания в линейно поляризованном свете совершаются в одной плоскости, перпендикулярнойплоскос-ти поляризации, определил обычный свет «как совокупность или, точнее, как быструю последовательность систем,

поляризованных по различным направлениям волн». Акт поляризации, по Френелю,

«состоит не в создании этих поперечных движений, а в разложении их по двум перпендикулярным неизменным направлениям и в от делении составляющих друг от друга».

В этой смелой гипотезе, настолько смелой, что даже ревностный сторонник Френеля Араго отступил, не отважившись следовать за ним, мы видим один из ярких примеров тогода

как наука идет от «явного для нас» к «явному по природе», вопреки сложившимся представлениям и традициям. Френель задал на многие годы головоломную задачу теоретикам, каким образом эфир, настолько тонкий, что не оказывает никакого сопротивления движению сквозь него небесных тел, вместе с тем не оказывает упругого сопротивления сжатию и расширению, а упруго сопротивляется только деформациям сдвига.

Это свойство роднит его с твердым телом, а не с едкостью или газом, притом таким твердым телом, которое абсолютно несжимаемой не допускает продольных волн. Однако гипотеза поперечных волн позволила френелю построить теорию отражения и преломления света, а также теорию двойного преломления.

В мемуаре «О расчете цветов, которые вызывает поляризация в кристаллических пластинках», опубликованном в «Анналах физики и химии» за 1821 г., Френель излагает

основы своей теории поляризации. Он рисует картину поперечных колебаний частиц

упругой среды. «Очевидно, – пишет Френель, – что к этим новым колебаниям, перпендикулярным лучам, можно применять те же рассуждения и вычисления, которые применяются в случае, когда колебательное движение происходит вдоль направления распространения». Это дает ему возможность применить к поляризованному свету принцип интерференции и таким путем «объяснить многие оптические явления ».

В частности, Френель строит теорию поляризации света при отражении, считая, что при переходе света из одной прозрачной среды в другую упругость эфира не меняется, а

меняется его плотность. Вначале он рассчитывает интенсивность отраженного света, поляризованного в плоскости падения, но в добавлении к статье рассматривает и случай отражения света, поляризованного перпендикулярно плоскости падения.

В мемуаре о двойном преломлении, представленном в Академию наук 9 декабря 1822 г., Френель описывает новый поляризационный прибор–стеклянный параллелепипед,

известный ныне под названием «параллелепипед Френеля». В этом приборе предварительно поляризованный свет «последовательно, на двух противоположных сторонах, претерпевает два полных внутренних отражения при (предельном) угле падения приблизительно в 50° и в плоскости, наклоненной на 45° к первоначальной плоскости поляризации». При этом выходящий из стеклянного параллелепипеда свет «является как будто полностью деполяризованным»... Френель выясняет, что на самом деле этот свет «можно рассматривать как состоящий из двух пучков, следующих по одному и тому же пути, но поляризованных в перпендикулярных направлениях и отличающихся в своем ходе на четверть длины волны».

Такой свет Френель называет поляризованным по кругу, а самую поляризацию – круговой (циркулярной) поляризацией. «Между прямолинейной и круговой поляризациями существует множество промежуточных степеней различных поляризаций, которые обладают характерными свойствами обеих этих поляризаций и которым, исходя из тех же теоретических соображений, можно было бы дать наименование эллиптических поляризаций».

Таким образом, Френель на языке волновой теории полностью описал явление поляризации, и введенные им понятия сохраняют свое значение и сейчас. Он указал методы экспериментального анализа поляризации света, используемые и поныне. К своим опытам он прибавил изящный метод разделения лучей, поляризованных по кругу, в противоположные

стороны. Воспользовавшись наблюдением Био, что существуют две модификации кварца (горного хрусталя, по тогдашней терминологии), из которых одна вращает плоскость поляризации вправо, а другая влево, он составил призму из трех частей; входной и выходной одного сорта, промежуточной – другого. Предполагая, что скорости распространения света, поляризованного по кругу влево и вправо, в различных сортах кварца различны, он нашел, что линейно поляризованный свет в такой составной призме разделится на два поляризованных по кругу луча. Они выйдут из выходной призмы, отклонившись в противоположные стороны. «...Мы получаем этим способом весьма заметное разделение двух изображений, которое можно было бы еще увеличить, умножая число призм», – пишет Френель.

7 января 1823 г. Френель представил Академии наук «Мемуар о законе модификаций, которые сообщаются отражением поляризованному свету». Здесь он дает механическое обоснование формул отражения света, поляризованного в плоскости падения, и света, поляризованного в плоскости, перпендикулярной плоскости падения. Если положить, что свет поляризован в плоскости, составляющей с плоскостью падения угол а, и амплитуда

колебаний равна 1, то амплитуда составляющей в плоскости падения будет sin а, а составляющей в плоскости, перпендикулярной плоскости падения, будет cos a.

Амплитуды соответствующих составляющих отраженного света будут:



где i - угол падения, i' угол преломления. Углы падения и преломления связаны, по

Френелю, соотношением:


где d - плотность первой среды, d' – плотность второй среды, упругость же эфира в обеих средах Френель принимает одинаковой.

Из своих формул Френель выводит закон Малюса– Брюстера. Он обосновывает свои формулы законом сохранения живых сил и гипотезой, что движения, параллельные границе

раздела, в обеих волнах одинаковы. Из формул Френеля вытекает поворот плоскости поляризации в отраженной и преломленной волнах. Весьма замечательно, что Френель распространил свои формулы и на случай полного отражения, смело введя мнимые величины: для углов, больших предельного, sin i' становится больше 1, а cos i' – мнимым.

Френель исходит при этом из того, что формулы, справедливые до предельного угла, должны «в силу общего закона непрерывности» быть правильными и при переходе через этот предел, однако «затруднение заключается в том, как их интерпретировать и как разгадать то, что возвещает анализ в этих мнимых выражениях». Френель разгадал, что же означает мнимое выражение: оно означает изменение фазы в отраженной волне. Оба компонента испытывают скачки разной величины.

Поразительно, как много сделал Френель за столь короткое время. Им по существу была полностью создана классическая волновая оптика. К описанным выше результатам следует добавить его теорию распространения света в одноосных и двухосных кристаллах,

развитую в работах о двойном лучепреломлении в 1821–1822 гг. Френель развил идеи Гюйгенса о распространении волн в одноосных кристаллах. Идеи Гюйгенса он настолько высоко ценил, что ставил их выше всех открытий в оптике Ньютона, утверждая, что открытие Гюйгенса, «быть может, труднее сделать, нежели все открытия Ньютона в области явлений света». Несомненно, что в этом утверждении отразился характер борьбы с эмиссионной теорией, которую вел Френель во всех своих оптических работах.

Для описания распространения света в кристаллах Френель ввел замечательное построение: эллипсоид упругости Френеля. Он установил, что в анизотропной

кристаллической среде всегда существуют три прямоугольные оси упругости. Он строит эллипсоид упругости, который дает закон изменения упругости анизотропной среды и скоростей для различных направлений распространения волн. Этот эллипсоид имеет две диаметральные плоскости, пересекающие его по кругам. Для волн, плоскости которых параллельны этим кругам, всегда имеется одна скорость распространения, каково бы ни было направление их колебаний. Эти направления Френель назвал оптическими осями и показал, что никогда не бывает более двух оптических осей в анизотропных средах. Для одноосных кристаллов поверхность упругости становится поверхностью вращения.

Френель заложил, таким образом, основы кристаллооптики. О том, насколько плодотворным оказался предложенный им метод можно судить по тому, что в 1832 г.

Гамильтон вывел из его теории следствие о существовании в двухосных кристаллах тонкого явления – конической рефракции. Если в таких кристаллах пучок света идет по направлению оптической оси, то он выходит из кристаллической пластинки в виде полого светового конуса (внешняя коническая рефракция). Конический пучок внутри кристалла выходит параллельным цилиндрическим пучком. Это явление невозможно обнаружить эмпирически, без помощи теории. Ллойд открыл его в том же 1832 г. экспериментально, руководствуясь теорией Френеля – Гамильтона. Это открытие было блестящим триумфом волновой теории света.

В истории физики важную роль сыграло опубликованное в 1818 г. в «Анналах химии и физики» письмо Френеля Араго по вопросу о влиянии движения Земли на оптические

явления. Араго пытался обнаружить это явление, измеряя разность зенитных расстояний звезды, наблюдаемой непосредственно и через призму. Араго такого влияния не обнаружил.

Это дало повод Френелю обсудить на основании волновой теории вопрос о влиянии движения Земли на распространение света в преломляющей среде. Френель знает, что

«скорость, с которой распространяется волна, не зависит от движения тела, которое ее испускает». Он полагает, что результат Араго можно объяснить, если предположить, «что эфир свободно проходит через земной шар и что скорость, сообщенная этой тонкой жидкости, представляет собой только небольшую часть скорости Земли и не превышает, например, одной сотой доли этой скорости».

Эта гипотеза частичного увлечения эфира помогла Френелю объяснить, почему

«видимая рефракция не изменяется с изменением направления световых лучей по отношению к движению Земли», как это обнаружил Араго и позднее Эйри (1801-1892). При этом Френель полагает, что квадраты длин волн в эфире и преломляющей среде относятся как плотности этих двух сред:
Отсюда коэффициент увлечения
где μ –показатель преломления среды.(Если брусок с плотностью эфира А'перемещается со скоростью v параллельно своей образующей, то в нем ежесекунднопроисходитизменение плотностиэфираv(Д' –д).Joжеизменениепроисходит,если

предположить,чтовесьэфирА'движетсясоскоростьюv1=kv.Приравнявобавыраженияv(Д'– Д)–Л»Д',получим формулуФренеля )

Френель показывает, что аберрационный эффект не изменится, если трубу телескопа заполнить водой, что и было подтверждено опытом Эйри в 1871 г. Идея этого опыта

принадлежала Бошко-вичу. формула же коэффициента увлечения была подтверждена в 1851 г. опытом физо, повторенным в 1886 г. Майкельсоном, производившим этот опыт с Морли, и в 1914 г. Зееманом.

Таковы важнейшие результаты, полученные Френелем в оптике. Следует добавить, что Френель не ограничивался теоретическими исследованиями, он стремился сочетать их с экспериментом. Так, всемирную известность приобрела изобретенная им система освещения

маяков, в которой важнейшей составной частью была сконструированная им ступенчатая линза, описанная в ме-муаре, представленном в Академию наук 29 июля 1822 г.

Фраунгофер. Современником Френеля был немецкий оптик Йозеф фраунгофер (1787–1826). Сын бедного баварского стекольщика, он рано начал трудовой путь, работая вместе с отцом по стекольному делу, фраунгофер до 14 лет был неграмотным. Оставшись к

12 годам круглым сиротой, он был определен учеником в зеркальную и стекольную мастерскую. Он попал в аварию, когда рухнули два ветхих дома, в том числе и дом с мастерской, и жильцы оказались погребенными под обломками. Все погибли, и лишь четырнадцатилетнего фраунго-фера откопали в очень тяжелом состоянии. Этот случай имел, однако, и благоприятные для Фраунгофера последствия. Очевидец катастрофы банкир Утцшнейдер стал оказывать покровительство фраунгоферу, и тот смог, продолжая работать в мастерской, посещать воскресную школу. Упорный труд превратил фраунгофера в хорошего мастера оптического стекла, и в 1806 г. Утцшнейдер определил его в Оптико-механический институт, принадлежавший фирме Рейхенбаха, Утцшнейдера и Либгерра.

Мастерство и талант помогли Фраунгоферу быстро сделать карьеру. Через год, в 1807 г. он становится оптиком института, через два совладельцем фирмы, еще через два года он

стоит во главе всей баварской оптической промышленности. Созданная им оптическая фирма «Утцшнейдер и Фраунгофер» получила мировую славу, производя первоклассные оптические инструменты. Так фраунгофер прошел путь от бедного неграмотного сироты, ученика стекольного ремесленника, до владельца мировой оптической фирмы, профессора и академика.

Два открытия в оптике обессмертили имя фраунгофера. В 1802 г. Волластон наблюдал в спектре Солнца семь темных линий. Он считал их границами отдельных цветных участков и не исследовал подробно. Только после того как фраунгофер детально изучил это явление

(1814–1815) и описал его в 1817 г., в физике появился термин «фраунгоферовы линии», который сохранился до настоящего времени, фраунгофер зафиксировал большое число темных линий и важнейшие из них обозначил буквами.

Вторым фундаментальным открытием фраунгофера была дифракция в параллельных лучах и изобретенная им дифракционная решетка.( Американец Риттенхауз открыл принципдифракционной решетки в 1785 г (См.. Вольф Э., Борн М Основы оптики. – М.: Наука, 1970,с.443)) Теория решетки с волновой точки зрения была дана в монографии Шверда (1792

1871) «Явления дифракции, выведенные аналитически из фундаментальных законов волновой теории», вышедшей в свет в 1835 г., через 9 лет после смерти фраунгофера. Таким образом, фраунгофер сделал после Ньютона новый важный шаг в развитии спектроскопии, подготовив почву для открытия Кирхгофа и Бунзена.

Скорость света. Успехи оптики первой половины XIX столетия не ограничились открытиями, описанными выше. Совершенствование экспериментальной техники позволило взяться за решение задачи, поставленной Галилеем: определить прямыми методами скорость

света. Задача эта была решена в середине века почти одновременно двумя французскими физиками: Ипполитом физо (1819-1896) и Леоном Фуко (1819-1868). физо разработал технически идею Галилея. Прерывание светового потока, идущего от источника света, он осуществил автоматически вращением зубчатого колеса.

Пучок света, пройдя через промежуток между зубцами, распространяется на некоторое расстояние (в опыте физо около 9 км), отражается от зеркала и идет обратно. Если колесо неподвижно, он попадет в тот же промежуток и направится в глаз наблюдателя. Если

же колесо вращается, то в зависимости от скорости вращения отраженный пучок попадет либо на зубец, либо в следующий промежуток.

Меняя скорость вращения колеса и измеряя число его оборотов, можно определить промежуток времени между двумя прохождениями света и скорость света.

физо провел свой опыт в 1849 г., получив для скорости света значение 313000км/с.

В установке Фуко применен метод вращающегося зеркала. Особенностью этого метода была возможность сравнения скорости света в воздухе и воде. Первые же

наблюдения, проведенные в 1850 г., показали, что скорость света в воде меньше, чем в воздухе. Этот результат рассматривался в то время как решающий аргумент в пользу волновой теории, так что первая половина XIX в. ознаменовалась решительной победой волновой оптики Гюйгенса– Френеля. Корпускулярная теория была сдана в архив. Но через полвека ее идеи вновь привлекли внимание физиков.


Рис.29.ПараллелепипедФренеля


Рис.30.ПризмаФренеля

1   ...   27   28   29   30   31   32   33   34   ...   86


написать администратору сайта