Главная страница

Кудрявцев Павел Степанович Курс истории физики


Скачать 7.55 Mb.
НазваниеКудрявцев Павел Степанович Курс истории физики
Дата22.02.2022
Размер7.55 Mb.
Формат файлаdocx
Имя файлаkurs_istorii_fiziki_rulit_net (1).docx
ТипКнига
#370373
страница19 из 86
1   ...   15   16   17   18   19   20   21   22   ...   86

Предложение XII


«Каждый луч света при своем прохождении через любую преломляющую поверхность приобретает некоторое преходящее строение или состояние, которое при продвижении луча возвращается через равные интервалы и располагает луч при каждом возвращении к легкому прохождению через ближайшую преломляющую поверхность, между же возвращениями–к

легкому отражению».

Таким образом, луч света попеременно через равные интервалы находится то в фазе легкого прохождения (Ньютон вместо слова «фаза» употреблял термин «приступ». Я. К.),

то в фазе легкого отражения. Результат его, падения на поверхность определяется тем, в какой фазе он падает – в фазе (или приступе) легкого прохождения или, наоборот, легкого отражения. Эта идея дает ему возможность описать опыт с кольцами и определить интервал между возвращениями в одну и ту же фазу.

Явление периодичности света, с нашей точки зрения, означает, что в описании его играют фундаментальную роль периодические функции, синусоидальные функции времени, пространства, т. е. гармонические волны. Ньютон использовал для описания открытого им

явления образ волны, возбуждаемой в преломляющей среде падением светового луча, подобно тому как камень, брошенный в воду, возбуждает в ней водяные водны. Эти волны, приводя в движение частицы преломляющего (или отражающего) тела, распространяются в этой среде подобно звуку и движутся со скоростью, большей скорости света, опережая луч.

Луч, падая на поверхность, либо движется в направлении фазы волны, и тогда он проходит, либо его движение противоположно направлению волнового движения, тогда он отражается. «Следовательно, заключает Ньютон, каждый луч попеременно располагается

или к легкому отражению или к легкому пропусканию каждым колебанием, обгоняющим его».

Эта модель Ньютона, в которой сочетаются корпускулярные (световой луч) и волновые представления (направляющая волна), предвосхищает будущие идеи де Бройля о волне-пилоте, бегущей с фазовой скоростью, большей скорости частицы и большей скорости

света. Вообще на всем протяжении своих оптических исследований, начиная с первых мемуаров и кончая «Оптикой», Ньютон постоянно обсуждает две концепции света: корпускулярную и волновую. Волновая теория ему кажется неспособной справиться с противостоящими ей огромными трудностями.

Во-первых, она не в состоянии объяснить прямолинейное распространение света, волна должна огибать препятствия и загибаться внутрь геометрической тени. Как мы знаем,

это действительно и наблюдается. Но Ньютон не заметил светлой полосы внутри тени волоса, а радужные внешние полосы он объяснил действием краев на малых расстояниях.

«Как только луч проходит мимо тела, он идет дальше по прямой».

Гюйгенс объяснил образование геометрической тени тем, что боковые вторичные волны, испускаемые точками волнового фронта, не имеют огибающей и поэтому

неэффективны. Но тем самым он отказался от описания дифракции, которая с успехом была

объяснена на основе его принципа Френелем через 130 лет. Гюйгенс далее очень удачно объяснил двойное преломление в одноосном кристалле, но остановился перед объяснением открытого им явления поляризации (употребляя теперешний термин).

Ньютон в своей «Оптике» разбирает это явление и считает, что его можно объяснить, исходя из представления присущей световому лучу полярности. Для волн (имелись в виду

продольные волны) о такой полярности говорить нельзя, и, следовательно, волновая теория в этом пункте несостоятельна.

Во-вторых, волновая теория требует допущения среды, в которой распространяется свет. «Против заполнения неба жидкими средами, говорит Ньютон, если они только не

чрезвычайно разрежены, возникает большое сомнение в связи с правильными и весьма длительными движениями планет и комет по всякого рода путям в небесном пространстве. Ибо отсюда ясно, что небесное пространство лишено всякого заметного сопротивления, а следовательно, и всякой ощутимой материи». «Если же ее (т. е. эту среду или материю. – П. К.) отбросить, то и гипотезы о том, что свет состоит в давлении или движении, распространяющемся через такую среду, отпадают вместе с нею».

Таким образом, Ньютон был первым строгим критиком волновой теории, рассматривающей свет как механические волны в особой среде, которая со времени

Гюйгенса стала называться световым эфиром. Мысль же о том, что световые волны могут быть другой, не механической природы, ему, конечно, в то время не могла прийти в голову.

В связи с серьезными трудностями волновой теории Ньютон предлагает обсудить другую концепцию природы света: «Не являются ли лучи света очень малыми телами,

испускаемыми светящимися веществами? Ибо такие тела будут проходить через однородные среды без загибания в тень, соответственно природе лучей света. Они могут иметь также различные свойства и способы сохранять эти свойства неизменными при прохождении через различные среды, в чем заключается другое условие лучей света. Прозрачные вещества действуют на лучи света на расстоянии, преломляя, отражая и изгибая их, и взаимно лучи двигают части этих веществ на расстоянии, нагревая их; это действие и противодействие на расстоянии очень похожи на притягательную силу между телами».

Ньютон считает, следовательно, что свет может быть исследован с точки зрения существования дальнодействующих сил. Свет по этой концепции мыслится состоящим из

частиц, своеобразных световых атомов, которые могут взаимодействовать с частицами вещества. В «Началах» Ньютон доказывает, что частица, вступая в плотную среду, ускоряется притяжением частиц этой среды. Если тангенциальная составляющая скорости частицы при этом не меняется, то направление ее движения можно определить по закону преломления:


где с, – скорость света в первой среде, с2 – во второй среде. При этом если i > r, т. е. луч света идет из менее плотной среды в более плотную, то с2 > с1, скорость света в воде или

стекле больше, чем в воздухе.

К такому же выводу еще раньше пришел Декарт, но у него речь шла только о механической модели, иллюстрирующей преломление, скорость же света он считал

бесконечной. Наоборот, у Гюйгенса закон преломления принимает вид:



и скорость света в воде меньше скорости света в воздухе.

Когда Фуко в 1850 г. показал, что скорость света в воде действительно меньше, чем скорость света в воздухе, то это казалось решающим опровержением корпускулярной

теории. На самом деле обе концепции нашли свое место не только в описании света, но и в описании материи на совершенно иной, не классической основе. И Ньютон, как бы предвидя это обстоятельство, избегал высказываться решительно в пользу той или иной концепции.

Только его последователи приписывали ему безоговорочную поддержку корпускулярной теории. Ньютон же как в оптике, так в вопросе о тяготении категорически подчеркивал, что он «не измышляет гипотез», а предполагает оставаться на почве строго установленных фактов и принципов.

При всем различии оптики Ньютона и Гюйгенса у них есть одна существенная общая черта: оба они стремятся описать явление света в рамках механических представлений.

Механика лежала в основе физических и философских воззрений XVII в. Декарт, Гюйгенс, Ньютон –все они пытались свести явления природы к явлениям механики. «Было бы желательно вывести из начал механики и остальные явления природы...» –писал Ньютон в предисловии к «Началам», и с этим желанием солидаризировались современные ему физики и философы.

Механические явления были наиболее ясными и наглядными; в изучении этих явлений физика достигла наибольших успехов, и механическое мировоззрение явилось отражением этих успехов. Еще Декарт развивал механическую картину мира. Ньютон заложил новые

основы механического мировозврения, после ожесточенной борьбы вытеснившие картезианские. Эти основы были заложены в его «Математических началах натуральной философии», к рассмотрению которых мы вновь обращаемся.

В «Началах» содержатся определения основных понятий механики, формулировка основных законов механики, известных ныне под именем законов Ньютона, приложения законов механики к теории движения под действием центральных сил и к решению других механических вопросов, обоснование закона всемирного тяготения, открытого Ньютоном, и

изложение системы мира, т. е. теории движения планет и спутников на основе закона тяготения. Таким образом, это первый в истории науки систематический курс теоретической механики, включающий и небесную механику. Отдельные результаты предшественников Ньютона, начиная с Галилея, были обобщены и развиты Ньютоном в его гигантском труде.

Ньютон завершил работу предыдущих поколений и открыл путь последующим поколениям физиков и механиков.

«Начала» открываются определением количества материи: «Количество материи есть мера таковой, устанавливаемая пропорционально плотности и объему ее».

Русский переводчик «Начал» академик А. Н. Крылов вставил в скобках после слов

«количество материи» слово «масса», с тем чтобы ослабить впечатление от метафизического и неупотребительного в современных руководствах термина Ньютона. Ньютон вдобавок выражает массу через плотность, определяемую в этих руководствах как раз через массу и объем. Но термин «количество материи» и у Декарта, и у Ньютона имеет вполне определенное содержание. Декарт считает весь мир однородной материей и по большему или меньшему объему материи определяет ее количество. Ньютон, подобно древним атомистам, считает реальными атомы и пустоту. Количество однородных атомов и есть количество материи. Очевидно, оно будет тем больше, чем больше взятый объем и чем плотнее расположены атомы в этом объеме.

Чтобы не было никаких сомнений, Ньютон поясняет свое определение примерами воздуха, порошка, снега, количество материи которых увеличивается, если их сжать; «При этом, добавляет Ньютон, я не принимаю в расчет той среды, если таковая существует,

которая свободно проникает в промежуток между частицами».

Таким образом, определение количества материи у Ньютона опирается на атомистику и соответствует определенному строю физического мышления. Самое же главное, что эта

величина доступна измерению. Количество материи определяется по весу тела, оно пропорционально весу тела, «что мною найдено опытами над маятниками, произведенными точнейшим образом...».

Тысячелетняя практика использования весов для измерения количества вещества, массы вещества обобщается Ньютоном и анализируется экспериментально. Он наблюдал

качания маятников одинаковых длин, но с разными грузами: свинцовым, золотым, деревянным, ртутью и т. д. У всех этих маятников периоды совпадали.

Но еще Галилей показал, что движение маятника – это не свободное падение его груза. Все тела в отсутствие сопротивления воздуха падают одинаково. Ньютон проверил экспериментально утверждение Галилея, поместив в трубку перышко, кусок свинца и пробку. Откачав из трубки воздух, он убедился, что различные тела в безвоздушном

пространстве падают с одинаковой скоростью, а маятники качаются с одинаковым периодом независимо от веса груза.

Тем самым Ньютон подтвердил точным опытом независимость ускорения силы тяжести от массы тела. Масса и вес строго пропорциональны друг другу. Эту зависимость

Ньютон использовал для практического измерения масс или количества вещества.

Ньютон, открывший закон тяготения, ясно понимал, что вес– случайное, переменное воздействие на тело, и поэтому считал необходимым установить и другую, внутреннюю

характеристику тела – инерцию.(
1   ...   15   16   17   18   19   20   21   22   ...   86


написать администратору сайта