Главная страница

Кудрявцев Павел Степанович Курс истории физики


Скачать 7.55 Mb.
НазваниеКудрявцев Павел Степанович Курс истории физики
Дата22.02.2022
Размер7.55 Mb.
Формат файлаdocx
Имя файлаkurs_istorii_fiziki_rulit_net (1).docx
ТипКнига
#370373
страница18 из 86
1   ...   14   15   16   17   18   19   20   21   ...   86

Ньютон



Достигнутые опытным естествознанием результаты получили завершение в работах великого английского ученого Исаака Ньютона. Важнейшим научным достижением Ньютона было создание теории движения планет и связанное с этим открытие закона всемирного тяготения, положенного в основу физического обоснования гелиоцентрической системы. Ньютон жил и работал в знаменательную историческую эпоху, оказавшую огромное влияние на дальнейшее историческое развитие Англии и не только Англии. В год

рождения Ньютона началась английская революция, в год поступления Ньютона в Кембридж началась реставрация. В 1688 г. произошла так называемая «Славная революция», т. е. компромисс между борющимися за власть буржуазией и дворянством. В ньютоновскую эпоху Англия сформировалась как крупнейшая морская держава, сломившая морское могущество Испании и Голландии и сделавшая решающий шаг в капиталистическом развитии.

Страна жила напряженной политической жизнью, в ней боролись сторонники самых разнообразных политических идей – от приверженцев абсолютной монархии до идеологов уравнительного коммунизма. Бесконечно разнообразны были религиозные теории от сторонников католицизма (папистов) и англиканской церкви до крайних пуритан и атеистов. Наконец, это была эпоха расцвета опытной науки, провозглашенной Бэконом, •эпоха организации Лондонского Королевского общества, эпоха Бойля, Гука, Галлея.

Ньютон родился 25 декабря 1642 г. старого стиля, т. е. 4 января 1643 г. по новому стилю, в деревушке Вульсторп в графстве Линкольн (Линкольншир), в семье деревенского фермера, умершего незадолго до его рождения. До двенадцатилетнего возраста его воспитывала бабушка. В двенадцать лет Ньютона отдали в городскую школу в Грантаме. По окончании школы он возвратился в родную деревню. Из будущего ученого пытались сделать деревенского фермера. Но юноша не обнаруживал склонности к сельскому хозяйству, и по совету дяди, воспитанника Кембриджского университета, был отправлен обратно в Грантам для подготовки к поступлению в университет.

По своей структуре университет представлял совокупность отдельных колледжей, каждый из которых был нечто вроде самостоятельной общины. Члены этой общины (феллоу) жили и работали в колледже, образуя замкнутую корпорацию, нечто вроде монашеского ордена. Наиболее бедные члены этой общины – «сабсайзеры», не имевшие возможности платить за свое содержание, обязаны были прислуживать членам колледжа. В качестве

«сабсайзера» Ньютон был принят в колледж Святой Троицы (Тринити-колледж) в 1661 г.
Одним из учителей Ньютона был профессор Исаак Барроу, занимавший Люкасовскую кафедру, названную так по имени человека, завещавшего средства на ее содержание. Барроу

читал лекции по оптике на весьма высоком для того времени уровне (он, например, давал формулы линз для различных частных случаев), и Ньютон с большим интересом и вниманием слушал своего учителя. С ним у Ньютона установились тесные дружеские отношения, и Барроу стал видеть в одаренном ученике своего преемника. Ньютон получил младшую ученую степень бакалавра, затем в 1665 г.– степень магистра. В этом же году разразилась эпидемия чумы, и Ньютон уехал из Кембриджа в деревню, откуда возвратился

осенью 1668 г. В деревне он много и напряженно работал, его будущие великие открытия созревали в деревенском уединении. Немудрено, что через год, в 1669 г., Барроу, решив посвятить себя теологии, передал кафедру своему гениальному ученику. Ньютон стал профессором Кембриджа.

Первая научная работа Ньютона относится к оптике. Еще в 1665 г. он начал исследование призматических цветов. Результатом этого исследования явилось убеждение,

что никакими средствами нельзя добиться совершенства оптических приборов с объективами из линз. По его мнению, хроматическая аберрация линз неустранима. Поэтому Ньютон приходит к выводу, что в телескопе надо линзы заменить сферическими зеркалами. В 1668 г. он построил первую миниатюрную модель рефлектора. В 1671 г. Ньютон построил второй усовершенствованный рефлектор, послуживший поводом к избранию его членом Королевского общества.

Прочитанный Ньютоном мемуар об открытиях в оптике вовлек его в полемику с Робертом Гуком (1635-1703), официальным экспериментатором Королевского общества. Гук

в докладе, представленном обществу в 1672 г., и в книге «Микрография» становится на точку зрения волновой теории и высказывает мысль о поперечности световых волн.

Гук описывает явления интерференции и дифракции света, но еще недостаточно владеет языком волновой оптики, чтобы использовать эти явления для подтверждения волновой теории, как это сделал через полтораста лет Френель. Гук ревниво относился к

вопросам приоритета и оспаривал его у Ньютона как в оптике, так и в механике.

Раздраженный полемикой, Ньютон принял решение ничего не публиковать по оптике до тех пор, пока жив Гук, и выполнил это решение. Кроме первых двух оптических мемуаров, повлекших за собой полемику с Гуком, Ньютон не публиковал ничего до 1704 г., когда была издана его «Оптика».

Вообще Ньютон очень неохотно печатался, возможно и потому, что почти каждая публикация приводила к тяжелым спорам, в том числе и по вопросу приоритета. У Ньютона оспаривали приоритет в изобретении рефлектора, в исследовании цветов тонких пленок, в открытии закона тяготения и изобретении дифференциального и интегрального исчисления,

т. е. почти веего, что составляет славу Ньютона. Удивительного в этом неприятном обстоятельстве, принесшем немало огорчений Ньютону, ничего нет. Открытия, сделанные Ньютоном, «носились в воздухе», они относились к актуальным научным проблемам того времени, над которыми размышляло немало ученых, приходя с разных сторон к одинаковым или почти одинаковым выводам. Механика, математика и оптика созрели для завершающих открытий, и Ньютон выполнил эту завершающую работу с исчерпывающей полнотой и гениальностью.

Современники чувствовали величие Ньютона, и все же для одних он остался непонятным, а для других равноправным членом «республики наук», по выражению

М.В.Ломоносова, с которым можно и должно было спорить, не стесняясь в выражениях и обвинениях. Только на отдалении веков стал виден гений Ньютона, возвысивший его над всеми современниками, и стало ясным величие его дела.

Но тягостная полемика с современниками приводила порой Ньютона к решению

ничего не публиковать.

Однако поставленные проблемы все же надо было решать. Над проблемой движения планет размышляли многие современники Ньютона. Астроном Гал-лей понял, что идея Гюйгенса о существовании центростремительной силы позволяет объяснить динамику движения планет, и пытался ее разработать. В ходе работы он встретился с большими трудностями и обратился за консультацией к Ньютону. Ньютон показал ему рукопись, в которой проблема, волновавшая Галлея, была полностью решена. Галлей стал настойчиво

убеждать Ньютона опубликовать свой труд. Ньютон долго не соглашался. Только с помощью влиятельных в Кембридже лиц Галл ею удалось сломить сопротивление Ньютона.

Особенно смущала Ньютона третья часть его труда, в которой речь шла о системе мира.

«Третью часть я намерен теперь устранить,– писал он,– философия это такая наглая и

сутяжная дама, что иметь с ней дело – это все равно, что быть вовлеченным в судебную тяжбу». В конце концов знаменитые «Математические начала натуральной философии» Ньютона вышли в свет в 1687 г., спустя 144 года после того, как Коперник опубликовал свою систему мира. Эта система получила динамическое обоснование и стала прочной научной теорией. Одновременно было завершено начатое Галилеем дело создания новой механики.

Три закона Ньютона завершают труды Галилея, Декарта, Гюйгенса и других ученых по созданию классической механики и вместе с тем создают прочную основу для плодотворного ее развития.

Как и предвидел Ньютон, его «Начала», несмотря на трудный и специальный характер изложения, вызвали оживленную дискуссию в первую очередь с картезианцами. Допущение абсолютно пустого пространства и гравитационных сил, действующих на расстоянии через пустоту, породило философские споры. В них оказались заинтересованными и церковники,

связывающие эти допущения с таинством евхаристии, при котором якобы происходит чудесное превращение хлеба и вина в тело и кровь Христа. При подготовке второго издания

«Начал» кембриджский математик Коте, редактировавший это издание, усилил его антикартезианскую направленность, снабдив его своим предисловием, носящим откровенно теологический характер. Такой же характер носит и «Общее поучение», которым Ньютон заключает второе издание книги. В нем он указывает на несостоятельность картезианской вихревой концепции, описывает, как управляет миром господь бог. Ученый и богослов причудливо переплетаются в поучении Ньютона, научные идеи сочетаются в нем с теологическими бреднями.

Ньютон серьезно интересовался богословскими вопросами. Он был автором

«Толкования на книгу пророка Даниила», «Апокалипсиса» и «Хронологии». Его религиозность была резко антикатолической, антипапистской, и такой же характер носили его богословские книги. Если же добавить к этому, что Ньютон глубоко интересовался алхимией и увлекался алхимическими опытами, то мы можем понять, что он был сыном своего времени, когда наука, по выражению Энгельса, еще глубоко увязала в теологии.

Ньютон был сыном своего времени и в отношении к политическим проблемам. Его тревожила католическая и абсолютистская реакция, проявившаяся при Якове II Стюарте, и

он принимал активное участие в протесте Кембриджа против этих тенденций.

С приходом к власти Вильгельма Оранского в 1688 г. Ньютон был избран депутатом парламента от Кембриджа. Когда новое правительство стало испытывать финансовый кризис

от плохой чеканки обращающейся золотой монеты, которую можно было опиливать и обрезать, делая ее неполноценной, Ньютон со своими друзьями лордом Монтегю и философом Локком участвовал в обсуждении проекта финансовой реформы. Назначенный Смотрителем Монетного двора, Ньютон в короткий срок перечеканил монету, способствовав тем самым оздоровлению финансов страны.

В 1699 г. Ньютон был назначен директором Монетного двора и переехал в Лондон. В 1703 г. он был избран президентом Королевского общества. обеспеченный материально,

окруженный почетом и славой, Ньютон провел в Лондоне последние годы своей жизни. Он умер 21 марта 1727 г., и прах его был торжественно захоронен в Вестминстерском аббатстве.

Научное наследие Ньютона сводится к трем основным областям: математике, механике и астрономии, оптике. В математике Ньютон разделяет с немецким ученым и

философом Готфри-дом Вильгельмом Лейбницем (1646– 1716) славу создателя дифференциального и интегрального исчисления.

Мы уже видели, что потребность в создании новой математики, математики переменных величин, была остро насущной. Эта математика постепенно создавалась усилиями ученых различных стран, начиная с Кеплера, Галилея и Декарта. Проблема квадратуры криволинейных площадей и проведение касательных к кривым, проблема максимума и минимума успешно решались для отдельных случаев рядом математиков и физиков. Но только Ньютон и Лейбниц разработали общий метод решения таких задач. Ньютон назвал свой метод исчислением флюксий, именуя этим термином то, что мы ныне

подразумеваем под производной. Саму переменную функцию Ньютон назвал флюентой (текущей), флюксии Ньютон обозначал буквами с точкой наверху. О своем методе Ньютон сообщил в письме Лейбницу, переставив буквы латинской фразы: «Дана флюента, найти флюксию и обратно». Он выписал с соответствующим числовым коэффициентом те буквы, которые встречаются в этом предложении. Зашифрованное таким образом предложение было разгадано Лейбницем, который сообщил в ответ, что он сам владеет подобным же методом. Об этом обмене письмами Ньютон сообщил в одном из примечаний к первому изданию «Начал», указав, что метод Лейбница отличается от его собственного лишь обозначениями. Лейбниц обозначал производные штрихами (y', у" и т. д.) или как отношение дифференциалов (dx/dy)

Квадратуру Лейбниц обозначал удлиненной латинской буквой J, т. е. современным

знаком интеграла.

Обозначения, введенные Лейбницем, оказались весьма удобными и сохранились до настоящего времени. Что же касается ньютоновских обозначений, то они употребляются в

физике для указания производных по времени (х, x, y ).

Во втором и третьем изданиях «Начал», которые были выпущены при жизни Ньютона, примечание о переписке с Лейбницем было снято. Причиной этому был спор о приоритете,

который разделил математиков того времени на два лагеря. Приверженцы одного из них защищали приоритет Ньютона, сторонники другого – Лейбница. Последующие исследования показали, что оба ученых пришли к великому открытию независимо друг от друга. Однако Энгельс был на стороне Лейбница и считал Ньютона плагиатором, так далеко докатились отголоски этого тягостного спора, который пришлось распутывать историкам математики.

Интересно, что в «Началах» Ньютон не пользуется своим методом, а доказывает свои предложения геометрическим способом и с помощью метода предельных отношений.

Последний представляет собой дальнейшее развитие метода древних атомистов («метода неделимых»). Ньютон в поучениях к первой книге «Начал» подчеркивает это обстоятельство, разъясняя, что в его методе фигурируют не «неделимые» конечно малые величины, «математические атомы», а бесконечно малые величины, т. е. не у, х, a dy, dx. В его разъяснении заключаются современные определения производных и интегралов:


При обосновании метода пределов Ньютон апеллирует к механическим образам, к представлению о конечной, предельной скорости движения. Так входили в науку новые

математические идеи, логическое обоснование которых потребовало усилий многих поколений математиков, вплоть до нашего времени. Идея бесконечности оказалась весьма коварной.

Но Ньютон избежал трудностей. Доказав вспомогательные геометрические леммы методом пределов, он в дальнейшем все предложения доказывал в духе старых геометров и

логически безупречно. Однако эта безупречность достигалась за счет громоздкости и сложности доказательств. Последующим математикам пришлось выполнить работу по переводу механики на язык математического анализа.

В 1736 г. вышла «Механика, или Наука о движении, изложенная аналитически Леонардом Эйлером, членом Петербургской Академии наук», в которой были впервые

написаны в дифференциальной форме уравнения механики и все математические расчеты велись на языке анализа. В 1788 г., через 100 лет после «Начал» Ньютона, вышла

«Аналитическая механика» Лагранжа, в которой, как об этом с гордостью сообщал сам автор, не было ни одного чертежа. Так за 100 лет эволюционизировали математические методы механики.

Роль математики в развитии физики огромна. Современная теоретическая физика– сугубо математическая дисциплина, построенная на сложном математическом аппарате.

Начало такому развитию теоретической физики было положено Галилеем, Декартом, Ньютоном и Лейбницем, выдающимися физиками и философами XVII столетия, философия активно участвовала в развитии новой науки. Работа, проделанная Бэконом, Декартом, Спинозой, Локком и другими философами XVII в., помогала развитию естествознания.

Естествоиспытатели и философы работали рука об руку над построением фундамента новой науки и нового мировоззрения. Поэтому глубоко не правы те, кто считает, что

философия только мешала развитию науки, путаясь у ней в ногах и навязывая ей чуждые догмы. Передовая философская мысль всегда расчищала дорогу науке и, опираясь на достижения науки, сама развивалась и обогащалась. Догматизм, некритическое высокомерие всегда были врагами и науки и философии.

Говоря о математических идеях Ньютона и соотношении философии и естествознания, мы уже перешли тем самым к рассмотрению его знаменитых «Математических начал натуральной философии «Термин «натуральная философия» свидетельствовал о тесной связи науки и философии, которые, как и в эпоху возникновения науки в Древней Греции, работали вместе. Но по существу он означал физику, и в английских университетах физика

еще долгое время называлась натуральной философией. Так, в истории науки термин

«физика» впервые был употреблен для обозначения книги по философии природы, натуральной философии, а термин «натуральная философия» был использован для книги, излагающей основу классической физики. Однако это забавное историческое обстоятельство имеет вполне серьезный смысл: и Аристотель, и Ньютон смотрели на задачи физики одинаково – как на общую теорию природы. Различие, причем очень существенное, в их взглядах заключалось в методе построения такой теории. Ньютон строил натуральную философию, т. е. теорию природы, на математических и, конечно, экспериментальных началах, тогда как Аристотель принципиально исключал математику и эксперимент как метод познания природы. Победил метод Галилея – Ньютона, приведший физику к тем колоссальным успехам, которые ныне видны каждому, даже человеку, совершенно неискушенному в физике.

Прервем пока рассказ о «Началах» Ньютона и рассмотрим предварительно его открытия в оптике. По свидетельству самого Ньютона, он еще в 1665 г. купил призму, чтобы воспроизвести «знаменитое явление цветов». Призматический спектр был в то время хорошо

известен, а призмы изготовлялись на продажу.

Призматическими цветами занимались многие ученые, и Марци, например, понял, что каждому цвету присуща своя преломляемость. Но Ньютон впервые исследовал спектр

всесторонне и глубоко, заложив основы научной спектроскопии.



Титульныйлист'Механики'Эйлера

Он правильно понял удлиненную форму спектра, установил со всей определенностью факт различной преломляемости цветовых лучей, дальнейшую неразлагаемость

монохроматического пучка, выяснил влияние формы щели на чистоту спектра, впервые применил метод скрещенных призм, короче, как было уже сказано, заложил основы спектроскопии.

Получая призматический спектр, мы устанавливаем призму на угол наименьшего отклонения, как это делал Ньютон, регулируем ширину щели, опираясь на его наблюдения о влиянии форм и размеров отверстия на чистоту спектра, скрещиваем спектральные аппараты

при изучении аномальной дисперсии, как это сделал впервые Ньютон, еще не знавший аномальной дисперсии.



Рис.15.ОпытНьютонассолнечнымспектром

Основной результат своих спектроскопических исследований Ньютон сформулировал так: «Всякий однородный свет имеет собственную окраску, отвечающую степени его

преломляемости, и такая окраска не может изменяться при отражениях и преломлениях».


Рис.16.МетодскрещенныхпризмНьютона

Таким образом, по Ньютону, у светового луча имеется объективная, неизменная характеристика (цвет), которую он сохраняет при отражении и преломлении. В другом месте

Ньютон указывал, что эта характеристика не может быть изменена какой-либо иной причиной, которую он мог наблю дать.

Ньютон не наблюдал отражения от движущегося зеркала, комбинационного рассеяния, в которых проявляются изменения цветности луча.

Такие квантовые эффекты были обнаружены только в XX в., и до тех пор вывод Ньютона сохранил всю свою силу, как он сохраняет ее и сейчас во всех случаях, когда не

происходит энергетических превращений световых квантов.


Как уже упоминалось, из своих исследований Ньютон сделал важный практический вывод о существовании хроматической аберрации, которую он ошибочно считал

неустранимой. Им (впрочем, не только им одним) были введены в астрономию телескопы – рефлекторы.

Стеклянные зеркала таких рефлекторов Ньютон сам шлифовал с величайшим терпением и искусством, подробно описывая в «Оптике» процедуру шлифовки. Ньютон

работал в оптике и как исследователь, и как практик. Чрезвычайно интересно, что он думал связать с качественной характеристикой света и число, соответствующее этой характеристике, осуществив первый интерференционный спектроскоп, известный под названием «кольца Ньютона».

Ньютон понял, что интерференционные цвета тонких пленок (интерференции света он еще не знал, хотя хорошо понимал сущность волновых явлений) определяются толщиной

пленки. Это предположил еще раньше Гук, который запальчиво обвинил Ньютона в плагиате. Но Гук не проверил свою гипотезу и не сделал из нее конкретных выводов.

Ньютон же разработал установку, в которой толщина менялась по простому геометрическому закону, получил на этой установке цветные коль-Ца и открыл важный факт повторяемости цветов при изменении толщины на определенную величину.

Другими словами, Ньютон был первым в мире, открывшим периодичность в световых явлениях. Он установил, что для каждого цвета имеется своя длина, на которую изменяется толщина воздушного клина, когда одно цветовое кольцо заменяется другим того же цвета.

Она соответствует четверти длины световой волны, по волновым представлениям. Ньютон определил эту величину для всех основных цветов спектра–от красного до фиолетового.

Принимая во внимание, что оттенки цвета распознать очень трудно и основные семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый весьма

неопределенные понятия, следует признать, что Ньютон определил длину волны весьма точно. Лишь в красной части спектра у него наблюдаются расхождения с современными данными.

Ньютон исследовал также явление дифракции и, описав достаточно точно радужные полосы на внешних границах тени волоса, не заметил внутренней светлой полосы. Не

заметил он и фраунгоферовых линий в солнечном спектре, которые были открыты значительно позже (в 1801 г.) Волластоном и вновь переоткрыты и тщательно описаны фраунгофером. Сыграли ли тут роль недостатки зрения Ньютона или некоторая теоретическая предубежденность (один из «призраков» Бэкона), сказать трудно, фактом остается то, что знаменитый наблюдатель не заметил некоторых важных и интересных фактов. На каком же языке описывал Ньютон открытую им периодичность, если в оптике он не пользовался языком волновой теории и не прибегал к таким понятиям, как длина волны?

Приведем его собственную формулировку из «Оптики».
1   ...   14   15   16   17   18   19   20   21   ...   86


написать администратору сайта