алгебра. Ознакомление с представлением числовых данных и их характеристик. Купности и их обработки. Такие вопросы рассматриваются в мате матической статистике
Скачать 0.62 Mb.
|
Таблица 9
Отсюда можно вычислить Db = 0,19156 кг2 и в = = 0,43767 кг. Задав доверительную вероятность р = 0,95, находим из табл. 8 для объема выборки п = 10 параметр t= 2,26. Подставляя эти данные в (3.26), получаем для доверительного интервала [см. (3.27)]: или (3.28) Полезно сопоставить соотношения, полученные для большой (3.25) и малой (3.28) выборок. Интервальная оценка истинного значения измеряемой величины. Интервальная оценка генеральной средней может быть использована для оценки истинного значения измеряемой величины. Пусть несколько раз измеряют одну и ту же физическую величину. При этом по разным случайным причинам, вообще говоря, получают разные значения: x1, x2, x3, ... . Будем считать, что нет преобладающего влияния какого-либо фактора на эти измерения. Истинное значение измеряемой величины (хист) совершенно точно измерить невозможно хотя бы по причине несовершенства измерительных приборов. Однако можно дать интервальную оценку для этого значения. Если значения х1, х2, х3, ... рассматривать как варианты выборки, а истинное значение измеряемой величины хист как аналог генеральной средней, то можно по описанным выше правилам найти доверительный интервал, в который с доверительной вероятностью р попадает истинное значение измеряемой величины. Применительно к малому числу измерений (п < 30) из (3.27) получим: (3.29) где — среднее арифметическое значение из полученных измерений, а — оответствующее им среднее квадратическое отклонение, t—коэффициент Стьюдента. Более подробно и разносторонне оценка результатов измерений рассматривается в практикуме (см. [1]). §3.3. Проверка гипотез В медико-биологических исследованиях актуальной является задача сравнения выборок, полученных в результате эксперимента, заключающегося в том или ином воздействии на объект. Фактически конечный результат исследования зависит от достоверности различий значений случайной величины в контроле (до воздействия или без него) и опыте (после воздействия). Наиболее просто решается задача определения достоверности различий статистических распределений, если предварительно для выборок рассчитаны доверительные интервалы. Положим, есть два статистических распределения некоторых случайных величин Xи Y. Пусть генеральные средние этих распределений с доверительной вероятностью р = 0,95 находятся в доверительных интервалах и пусть при этом Если соблюдается неравенство , то не вызывает сомнения, что случайная величина Yсущественно больше случайной величины X(см. рис. 3.3, а). Вероятность этого превышает 0,95. На рис. 3.3, б представлен вариант, когда выборки частично пересекаются, т. е. когда выполняется неравенство В этом случае целесообразно оценивать достоверность различий выборочных средних и с помощью дополнительных расчетов. Наиболее просто это сделать, предполагая, что случайные величины Xи Yраспределены по нормальному закону. Условием существенности различия двух опытных распределений, являющихся выборками из различных генеральных совокупностей, является выполнение следующего неравенства для опытного и теоретического значений критерия Стьюдента: Для нахождения значения toписпользуют следующую формулу: (3.30) Здесь х и у — выборочные средние квадратические отклонения, пхи пу— число вариант в выборках (объемы выборок), и у — выборочные средние значения. а) б) Рис. 3.3 Теоретическое значение tтeop находят по таблице 10, входными величинами которой являются доверительная вероятность р и параметр f, связанный с числом вариант в выборках. Этот параметр определяют следующим образом. Если х у, то f= пх + п — 2. Если же х и у различаются на порядок и более, то величина fопределяется по формуле: (3.31) Таблица 10.Значения критерия Стьюдента tтeop при различной доверительной вероятности и значениях параметра f
Используя этот способ оценки достоверности различия выборочных средних значений двух выборок, следует придерживаться такой последовательности действий. Во-первых, по экспериментальным данным нужно найти значения выборочных средних и средних квадратических отклонений для каждой выборки. Затем, сравнив величины х и у, найти величину f. После этого следует задать определенное значение доверительной вероятности и по таблице 10 найти tтeoр . Затем по формуле (3.30) рассчитать toп. Если при сравнении теоретического и опытного критериев Стью-дента окажется, что toп > tтeoр, то различие между выборочными средними значениями случайных величин Xи У можно считать существенным с заданной доверительной вероятностью. В противоположном случае различия несущественны. Представленный выше способ оценки достоверности различий выборок по выборочным средним является довольно простым. Существует большое число тестов и критериев для сравнения выборок и составления заключения о достоверности их различий. Как правило, при этом рассматривают вероятность двух взаимоисключающих гипотез. Одна из них, условно называемая «нулевой» гипотезой, заключается в том, что наблюдаемые различия между выборками случайны (т. е. фактически различий нет). Альтернативная гипотеза означает, что наблюдаемые различия статистически достоверны. При этом для оценки обоснованности вывода о достоверности различий используют три основных доверительных уровня, при которых принимается или отвергается нулевая гипотеза. Первый уровень соответствует уровню значимости 0 < 0,05; для второго уровня 0 < 0,01. Наконец, третий доверительный уровень имеет 0 < 0,001. При соблюдении соответствующего условия нулевая гипотеза считается отвергнутой. Чем выше доверительный уровень, тем более обоснованным он считается. Фактически значимость вывода соответствует вероятности р = 1 - 0. В медицинских и биологических исследованиях считают достаточным уже первый уровень, хотя наиболее ответственные выводы предпочтительнее делать с большей точностью. Одной из методик, позволяющих судить о достоверности различий статистических распределений, является ранговый тест Уилкоксона. Под рангом (Ri)понимают номер, под которым стоят исходные данные в ранжированном ряду. Если в двух сравниваемых выборках данному номеру соответствуют одинаковые варианты, то рангом этих вариант является среднее арифметическое двух рангов — данного и следующего за ним (см. пример). Покажем, как используется этот тест на примере сравнения двух равных по объему выборок. *Измеряли массу 13 недоношенных новорожденных (в граммах) в двух районах А и Б большого промышленного центра, один из которых (Б) отличался крайне неблагоприятной экологической обстановкой. Получены два статистических распределения (А) и (Б): А: 970 990 1080 1090 1110 1120 ИЗО 1170 1180 1180 1210 1230 1270 Б: 780 870 900 900 990 1000 1000 1020 1030 1050 1070 1070 1100 Следует решить вопрос о том, достоверны ли различия между этими статистическими распределениями. Составим общий ранжированный ряд с указанием номеров соответствующих вариант (RА.Б) — рангов (строки А и Б соответствуют выборкам): А: 970990 1080 1090 1110.. RА: 5 6,5 15 16 18 Б: 780 870 900 90,0 990 1000 1000 1020 1030 1050 1070 1070 1100 RБ : 1 2 3 4 6,5 8 9 10 11 12 13 14 17 Как видно, варианта 990 встречается в первой и второй выборках, поэтому для нее рангом является среднее арифметическое значение 6 и 7. Далее в ряду остаются лишь варианты первой выборки, поэтому ряд не закончен. Нулевая гипотеза состоит в том, что различий между выборками нет (они случайны и потому несущественны). Ранговый тест учитывает общее размещение вариант и размеры выборок, но не требует знания типа распределения. Основной вывод о верности нулевой гипотезы делается на основании анализа минимальной суммы рангов (из двух сумм для сравниваемых выборок), т. е. критерием является величина (учитывая, что )- При этом пользуются специальными таблицами. В частности, если число вариант в выборках одинаково (п1 = п2), то используется таблица 11. Таблица 11,Критические значения величины Г (теста Уилкоксона) при п1 = n2 = n для разных значений уровня значимости
Примечание. Нулевая гипотеза отбрасывается при Т < Т0,05 или Т < Т0,01 . В этой таблице указаны две входные величины: число вариант в выборках (п) и значение третьего и второго уровней значимости (0 = 0,05 и 0,01). В нашем случае , что меньше табличного значения для п = 13 и 0 < 0,01. Следовательно, на втором уровне значимости (р > 0,99) можно отвергнуть нулевую гипотезу. Таким образом, различия выборок достоверны с вероятностью, превышающей 0,99. |