Главная страница

Курс лекций по электронике. Курс лекций Курс лекций 1 Введение 4 Полупроводниковые диоды 7


Скачать 5.23 Mb.
НазваниеКурс лекций Курс лекций 1 Введение 4 Полупроводниковые диоды 7
АнкорКурс лекций по электронике.doc
Дата16.05.2017
Размер5.23 Mb.
Формат файлаdoc
Имя файлаКурс лекций по электронике.doc
ТипКурс лекций
#7720
страница4 из 27
1   2   3   4   5   6   7   8   9   ...   27

1.4. Высокочастотные диоды



Для них оговариваются те же параметры (основные и второстепенные), но они могут работать при высокой частоте и обладают малым временем восстановления (по сравнению с выпрямительными). Для них приводится график прямого тока в зависимости от частоты. График представлен на рис. 12.

1.5. Импульсные диоды



Оговариваются те же основные параметры, что и для рассмотренных выше диодов, и приводится еще важный второстепенный параметр - импульсный ток за оговоренное время.


1.6. Стабилитроны и стабисторы



Рабочей частью ВАХ у стабилитронов является обратная ветвь. Прямая ветвь такая же как у диодов, она также может использоваться.

ВАХ стабилитрона представлена на рис. 13. Для стабилитронов указывается два основных параметра:

Uст - напряжение стабилизации стабилитрона;

Iст.н – номинальный ток стабилитрона.

Uст=3,3...170В. Для Uст указывается разброс в процентах или в вольтах, а также изменение Uст при изменении температуры. У маломощных стабилитронов Iст.min=1...3mА, Iст. max=30mA. Iст.н у мощных стабилитронов составляет несколько сот mA.

Стабисторы - это стабилитроны, у которых используется прямая ветвь ВАХ. ВАХ стабистора показана на рис. 14. Такая ВАХ создается технологически. Стабистор-диод с большим падением напряжения, которое постоянно при изменении тока. Стабилитроны и стабисторы могут соединяться последовательно, но не параллельно. Они используются в стабилизаторах и ограничителях напряжения.

2. Биполярные транзисторы




2.1. Общие принципы



Биполярные транзисторы - это приборы на основе трехслойной структуры. Существуют две структуры, которые представлены на рис. 15а, 15б. Структура транзистора имеет три области с тремя чередующимися типами проводимости. В зависимости от порядка чередования областей различают транзисторы p-n-p- и n-p-n типа. Они имеют два p-n перехода. Существуют еще полевые транзисторы, имеющие другие структуры.

Транзистор является управляемым прибором. Управляющим выводом является база Б, который делается от среднего слоя. Другие два вывода называются эмиттер Э и коллектор К. Управляющей цепью является переход база-эмиттер Б-Э. Этот переход является диодным и ток через него может протекать только по направлению проводимости диодного перехода. Цепь коллектор-эмиттер К-Э является управляемой цепью. С помощью тока через переход Б-Э можно управлять током через переход К-Э.

Принцип работы транзистора поясняется с помощью рис. 16.

Переход база-эмиттер (эмиттерный переход) за счет источника Еб смещен в прямом направлении, а переход коллектор-база (коллекторный переход) за счет источника Ек смещен в обратном направлении. Переход база-эмиттер – это диод, включенный в прямом направлении. Переход коллектор-база – это диод, включенный в обратном направлении. Благодаря смещению перехода база-эмиттер в прямом направлении электроны из эмиттера n-типа переходят в базу p-типа и движутся по направлению к обедненному слою на переходе база-коллектор. Эти электроны, являющиеся неосновными носителями в области базы, достигнув обедненного слоя, затягиваются полем объемного заряда коллекторного перехода и стремятся к минусу источника Ек, создавая тем самым в транзисторе коллекторный ток.

Лишь малая часть электронов в базе p-типа в процессе движения в сторону коллектора рекомбинирует с дырками. Дело в том, что база делается слабо легированной, т.е. с низкой концентрацией дырок, и очень тонкой. Когда электрон рекомбинирует в базе, происходит кратковременное нарушение равновесия, т.к. база приобретает отрицательный заряд. Равновесие восстанавливается с приходом дырки из базового источника Еб. Этот источник является поставщиком дырок для компенсации рекомбинирующих в базе, и эти дырки образуют базовый ток транзистора. Благодаря базовому току в базе не происходит накопления отрицательного заряда и переход база-эмиттер поддерживается смещенным в прямом направлении, а это, в свою очередь, обеспечивает протекание коллекторного тока.

Если коллекторную цепь разорвать, то все электроны циркулировали бы в цепи база-эмиттер. При наличии коллекторной цепи большая часть электронов устремляется в коллектор.

Таким образом, транзистор является прибором, который управляется током. Уменьшение потока электронов через коллекторный переход по сравнению с их потоком через переход эмиттер-база характеризуется коэффициентом передачи тока эмиттера = Iк/Iэ. Обычно =0,9…0.995. Отношение тока коллектора к току базы называется коэффициентом усиления тока базы в рассматриваемой схеме включения транзистора (она называется схемой с общим эмиттером). Этот коэффициент обозначают h21Э. Он равен h21Э=Iк/Iб>>1. Обычно h21Э =10…300.

Физически в работе транзистора принимают участие заряды двух типов (электроны и дырки), поэтому он называется биполярным.

При рассмотрении смещенного в прямом направлении перехода база-эмиттер мы учитывали только электроны, пересекающие этот переход. Такой подход оправдан тем, что область эмиттера n-типа специально легируется очень сильно, чтобы обеспечить большое количество свободных электронов. В тоже время область базы легируется очень слабо, что дает настолько мало дырок, что ими можно пренебречь при рассмотрении тока через переход база-эмиттер.

Таким образом, транзистор является усилительным прибором. В зависимости от схемы включения он может обеспечивать усиление по току, напряжению или по мощности. Возможно одновременное усиление и по току, и по напряжению, и по мощности.

Обозначения транзисторов типа p-n-p и n-p-n на электрических схемах показаны на рис. 17, 18.


1   2   3   4   5   6   7   8   9   ...   27


написать администратору сайта