Главная страница
Навигация по странице:

  • 2.3 Micrografx Designer 7 15 2.4 Adobe Illustrator 7 15 2.5 Macromedia FreeHand 7 16 2.6 Adobe Photoshop 16

  • 4.2 Программа Ultra Fractal 22 4.3 Программа Fractal Explorer 22 4.4 Программа ChaosPro 23 4.5 Программа Apophysis 23

  • 1. КОМПЬЮТЕРНАЯ ГРАФИКА

  • 1.1 Растровая графика

  • Разрешение экранного изображения

  • Разрешение печатного изображения и понятие линиатуры

  • Связь между параметрами изображения и размером файла

  • Масштабирование растровых изображений

  • 1.2 Векторная графика

  • Точка.

  • Рис. 3

  • Курс лекций Лекция 11. Графические редакторы содержание компьютерная графика 1 1 Растровая графика 2


    Скачать 1.32 Mb.
    НазваниеКурс лекций Лекция 11. Графические редакторы содержание компьютерная графика 1 1 Растровая графика 2
    Дата25.01.2022
    Размер1.32 Mb.
    Формат файлаpdf
    Имя файлаLec11.pdf
    ТипКурс лекций
    #341463
    страница1 из 5
      1   2   3   4   5

    Профессор
    Игорь Н. Бекман
    КОМПЬЮТЕРНЫЕ НАУКИ
    Курс лекций
    Лекция 11. ГРАФИЧЕСКИЕ РЕДАКТОРЫ
    Содержание
    1. КОМПЬЮТЕРНАЯ ГРАФИКА
    1
    1.1 Растровая графика
    2
    1.2 Векторная графика
    4
    1.3 Форматы графических данных
    7
    1.4 Трёхмерная графика
    8
    1.5 Фрактальная графика
    10
    1.6 Машинное проектирование
    12
    2. ГРАФИЧЕСКИЕ РЕДАКТОРЫ 12
    2.1 Photo Pos Pro Image Editor 1.33
    13
    2.2 Corel Xara 1.5
    14
    2.3 Micrografx Designer 7
    15
    2.4 Adobe Illustrator 7
    15
    2.5 Macromedia FreeHand 7
    16
    2.6 Adobe Photoshop
    16
    3. ПРОГРАММЫ ТРЁХМЕРНОЙ ГРАФИКИ 17
    3.1 3ds Max
    18
    3.2 Maya
    20
    4. ФРАКТАЛЬНЫЕ РЕДАКТОРЫ 21
    4.1 Art Dabbler
    21
    4.2 Программа Ultra Fractal
    22
    4.3 Программа Fractal Explorer
    22
    4.4 Программа ChaosPro
    23
    4.5 Программа Apophysis
    23
    4.6 Программа Mystica
    24
    Графический редактор - программа (или пакет программ), позволяющая создавать и редактировать двух- и трёхмерные изображения с помощью компьютера. Современные графические редакторы изображений используются как программы для рисования с нуля, и как программы для редактирования фотографий.
    В данной лекции рассмотрены основные принципы компьютерной графики (включая растровую и векторную графику) и приведены основные типы графических редакторов (Adobe Photoshop и др.), программы трёхмерной графики (3D Max иMaya) и редакторы фрактальной графики (Fractal Explorer,
    ChaosPro, и др.).
    1. КОМПЬЮТЕРНАЯ ГРАФИКА
    Представление данных на мониторе компьютера в графическом виде впервые было реализовано в середине 50-х годов для больших ЭВМ, применявшихся в научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъемлемой принадлежностью подавляющего числа компьютерных систем, в особенности персональных. Графический интерфейс пользователя сегодня является стандартом для программного обеспечения разных классов, начиная с операционных систем.
    Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, – компьютерная графика.
    Она охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой http://profbeckman.narod.ru/
    деятельности. Для примера назовем медицину (компьютерная томография), научные исследования
    (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.
    В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую, векторную и фрактальную.
    Рис. 1. Различные виды графики.
    Отдельным предметом считается трехмерная (3D) графика, изучающая приёмы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.
    Особенности цветового охвата характеризуют такие понятия, как чёрно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, научная графика, Web-графика, компьютерная полиграфия и прочие.
    На стыке компьютерных, телевизионных и кинотехнологий зародилась и стремительно развивается новая область компьютерной графики и анимации. Заметное место в компьютерной графике отведено развлечениям. Появилось даже такое понятие, как механизм графического представления данных (Graphics
    Engine). Хотя компьютерная графика служит всего лишь инструментом, её структура и методы основаны на передовых достижениях фундаментальных и прикладных наук: математики, физики, химии, биологии, статистики, программирования и множества других. Это справедливо как для программных, так и для аппаратных средств создания и обработки изображений на компьютере. Поэтому компьютерная графика является одной из наиболее бурно развивающихся отраслей информатики и во многих случаях выступает
    «локомотивом», тянущим за собой всю компьютерную индустрию.
    1.1 Растровая графика
    Растровая графика - прямоугольная матрица, состоящая из множества очень мелких неделимых точек (пикселей). Каждый такой пиксель может быть окрашен в какой-нибудь один цвет. Например, монитор, с разрешением 1024х768 пикселей имеет матрицу, содержащую 786432 пикселей, каждый из которых (в зависимости от глубины цвета) может иметь свой цвет. Т.к. пиксели имеют очень маленький размер, то такая мозаика сливается в единое целое и при хорошем качестве изображения (высокой разрешающей способности) человеческий глаз не видит «пикселизацию» изображения.
    При уменьшении изображения происходит обратный процесс - компьютер просто "выбрасывает" лишние пиксели. Отсюда главный минус растровой графики - зависимость качества изображение от его размеров.
    Растровую графику следует применять для изображений с фотографическим качеством, на котором присутствует множество цветовых переходов. Размер файла, хранящего растровое изображение зависит от двух факторов: размера изображения; от глубины цвета изображения (чем больше цветов представлено на картинке, тем больше размер файла).
    Рис. 2. Изменение растровой картинки при увеличении. http://profbeckman.narod.ru/

    Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать: разрешение оригинала; разрешение экранного изображения; разрешение печатного изображения.
    Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм (dots per inch – dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. Чем выше требование к качеству, тем выше должно быть разрешение оригинала.
    Разрешение экранного изображения. Для экранных копий изображения элементарная точка растра называется пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения. Мониторы для обработки изображений с диагональю 20–21 дюйм обеспечивают стандартные экранные разрешения 640х480, 800х600,
    1024х768,1280х1024,1600х1200,1600х1280, 1920х1200, 1920х1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22–0,25 мм. Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150–200 dpi, для вывода на фотоэкспонирующем устройстве 200–300 dpi. Обычно при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода.
    Разрешение печатного изображения и понятие линиатуры. Размер точки растрового изображения как на твёрдой копии (бумага, плёнка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch –
    Ipi) и называется линиатурой. Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра: если в ячейку попал абсолютно чёрный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит
    0%. На практике заполняемость элемента на отпечатке составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале приближающуюся к абсолютно чёрному цвету.
    Иллюзия более тёмного тона создаётся за счёт увеличения размеров точек и сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра. Такой метод называют растрированием с амплитудной модуляцией (AM).
    Интенсивность тона (так называемую светлоту) принято подразделять на 256 уровней. Большее число градаций не воспринимается зрением человека и является избыточным. Меньшее число ухудшает восприятие изображения (минимально допустимым для качественной полутоновой иллюстрации принято значение 150 уровней). Нетрудно подсчитать, что для воспроизведения 256 уровней тона достаточно иметь размер ячейки растра 256=16х16 точек. При выводе копии изображения на принтере или полиграфическом оборудовании линиатуру растра выбирают, исходя из компромисса между требуемым качеством, возможностями аппаратуры и параметрами печатных материалов. Для лазерных принтеров рекомендуемая линиатура составляет 65-100 Ipi, для газетного производства – 65-85 lpi, для книжно-журнального – 85-133
    lpi, для художественных и рекламных работ – 133-300 lpi.
    При печати изображений с наложением растров друг на друга, например многоцветных, каждый последующий растр поворачивается на определенный угол. Традиционными для цветной печати считаются углы поворота: 105 градусов для голубой печатной формы, 75 градусов для пурпурной, 90 градусов для желтой и 45 градусов для чёрной. При этом ячейка растра становится косоугольной, и для воспроизведения
    256 градаций тона с линиатурой 150 lpi уже недостаточно разрешения 16х150=2400 dpi. Поэтому для фотоэкспонирующих устройств профессионального класса принято минимальное стандартное разрешение
    2540 dpi, обеспечивающее качественное растрирование при разных углах поворота растра. Таким образом, коэффициент, учитывающий поправку на угол поворота растра, для цветных изображений составляет 1,06.
    Динамический диапазон. Качество воспроизведения тоновых изображений принято оценивать динамическим диапазоном (D). Это оптическая плотность, численно равная десятичному логарифму величины, обратной коэффициенту пропускания
    (для оригиналов, рассматриваемых «на просвет», например слайдов) или коэффициенту отражения (для прочих оригиналов, например полиграфических отпечатков). Для оптических сред, пропускающих свет, динамический диапазон лежит в пределах от 0 до 4.
    Для поверхностей, отражающих свет, значение динамического диапазона составляет от 0 до 2. Чем выше динамический диапазон, тем большее число полутонов присутствует в изображении и тем лучше качество его восприятия. http://profbeckman.narod.ru/

    Связь между параметрами изображения и размером файла. Средствами растровой графики принято иллюстрировать работы, требующие высокой точности в передаче цветов и полутонов. Однако размеры файлов растровых иллюстраций стремительно растут с увеличением разрешения. Фотоснимок, предназначенный для домашнего просмотра (стандартный размер 10х15 см, оцифрованный с разрешением
    200-300 dpi, цветовое разрешение 24 бита), занимает в формате TIFF с включенным режимом сжатия около
    4 Мбайт. Оцифрованный с высоким разрешением слайд занимает 45-50 Мбайт. Цветоделенное цветное изображение формата А4 занимает 120-150 Мбайт.
    Масштабирование растровых изображений. Одним из недостатков растровой графики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует определенное количество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию. Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточным для качественной визуализации при масштабировании. Другой приём состоит в применении стохастического растра, позволяющего уменьшить эффект пикселизации в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера иллюстрации происходит не за счет масштабирования точек, а путем добавления необходимого числа промежуточных точек.
    Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Для этой цели сканируют иллюстрации, подготовленные художником на бумаге, или фотографии. В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. В Интернете пока применяются только растровые иллюстрации. В растровой графике тоже существуют линии, но они рассматриваются как комбинации точек. Для каждой точки линии в растровой графике отводится одна или несколько ячеек памяти (чем больше цветов могут иметь точки, тем больше ячеек им выделяется). Соответственно, чем длиннее растровая линия, тем больше памяти она занимает.
    Некоторый класс растровых графических редакторов предназначен не для создания изображений «с нуля», а для обработки готовых рисунков с целью улучшения их качества и реализации творческих идей. К таким программам, в частности, относятся Adobe Photoshop, Photostyler, Picture Publisher и др. Исходная информация для обработки на компьютере может быть получена разными путями: сканированием цветной иллюстрации, загрузкой изображения, созданного в другом редакторе, или вводом изображения от цифровой фото- или видеокамеры. При создании художественных композиций отдельные фрагменты часто заимствуют из библиотек изображений-клипартов, распространяемых на компакт-дисках. Основа будущего рисунка или его отдельные элементы могут быть созданы и в векторном графическом редакторе, после чего их экспортируют в растровом формате.
    1.2 Векторная графика
    Ве́кторная гра́фика - использование геометрических примитивов, таких как точки, линии, сплайны и многоугольники, для представления изображений в компьютерной графике. Термин используется в противоположность к растровой графике, которая представляет изображения как матрицу пикселей (точек).
    Векторная графика описывает изображение с помощью математических формул. Основное преимущество векторной графики состоит в том, что при изменении масштаба изображения оно не теряет своего качества. Отсюда следует и ещё одно преимущество - при изменении размеров изображения не изменяется размер файла.
    Если в растровой графике базовым элементом изображения является точка, то в векторной графике – линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике.
    Линия – элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно, представить куб и как двенадцать связанных линий, образующих ребра. http://profbeckman.narod.ru/

    Рассмотрим подробнее способы представления различных объектов в векторной графике.
    Точка. Этот объект на плоскости представляется двумя числами (х, у), указывающими его положение относительно начала координат.
    Прямая линия. Ей соответствует уравнение y=kx+b. Указав параметры k и b, всегда можно отобразить бесконечную прямую линию в известной системе координат, то есть для задания прямой достаточно двух параметров.
    Отрезок прямой. Он отличается тем, что требует для описания ещё двух параметров – например, координат
    x
    1
    и х
    2
    начала и конца отрезка.
    Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба.
    Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:
    x
    2
    +a
    1
    y
    2
    +a
    2
    xy+a
    3
    x+a
    4
    y+a
    5
    =0.
    Таким образом, для описания бесконечной кривой второго порядка достаточно пяти параметров. Если требуется построить отрезок кривой, понадобятся еще два параметра.
    Рис. 3. Объекты векторной графики
    Кривая третьего порядка. Отличие этих кривых от кривых второго порядка состоит в возможном наличии точки перегиба. Например, график функции у=x
    3
    имеет точку перегиба в начале координат (Рис. 3).
    Именно эта особенность позволяет сделать кривые третьего порядка основой отображения природных объектов в векторной графике. Например, линии изгиба человеческого тела весьма близки к кривым третьего порядка. Все кривые второго порядка, как и прямые, являются частными случаями кривых третьего порядка. В общем случае уравнение кривой третьего порядка можно записать так:
    x
    3
    +a
    1
    y
    3
    +a
    2
    x
    2
    y+a
    3
    xy
    2
    +a
    4
    x
    2
    +a
    5
    y
    2
    +a
    6
    xy+a
    7
    x+a
    8
    y+a
    9
    =0.
    Кривая третьего порядка описывается девятью параметрами. Описание её отрезка потребует на два параметра больше.
      1   2   3   4   5


    написать администратору сайта