Главная страница

ЖБК. Курс лекций. Курс лекций по дисциплине Железобетонные конструкции для специальностей Архитектура иПромышленное и гражданское строительство


Скачать 1.89 Mb.
НазваниеКурс лекций по дисциплине Железобетонные конструкции для специальностей Архитектура иПромышленное и гражданское строительство
АнкорЖБК. Курс лекций.doc
Дата18.07.2018
Размер1.89 Mb.
Формат файлаdoc
Имя файлаЖБК. Курс лекций.doc
ТипКурс лекций
#21660
страница8 из 9
1   2   3   4   5   6   7   8   9

8.4. Сжатые элементы, усиленные косвенным армированием

Если в коротком сжатом элементе установить поперечную арматуру, способную эффективно сдерживать поперечные деформации, этим можно существенно увеличить его несущую способность. Такое армирование называется косвенным.

Для круглых и многоугольных поперечных сечений применяют косвенное армирование в виде спиралей или сварных колец (рис. 49, а), для прямоугольных сечений – в виде часто размещенных поперечных сварных сеток (рис. 49, б).

а) б)

Косвенное армирование применяют вблизи стыков сборных колонн, под анкерами и в зоне анкеровки предварительно напряженной арматуры для местного усиления.


Рис. 49. Сжатые элементы, усиленные косвенным армированием:

а – спиралями или кольцами; б – сварными сетками

Это объясняется повышенным сопротивлением бетона сжатию в пределах ядра, заключенного внутри спирали или сварной сетки. Спирали, кольца, сетки подобно обойме сдерживают поперечные деформации бетона, возникающие при продольном сжатии, и тем самым обуславливают повышенное сопротивление бетона продольному сжатию.

При расчете прочности сжатых элементов с косвенной арматурой учитывают лишь часть бетонного сечения Aef, ограниченную крайними стержнями сеток, кольцами или спиральной арматурой. Вместо сопротивленияRb применяют приведенное сопротивление Rb,red, которое определяется при армировании сварными сетками, как:

,

где Rs,xy – расчетное сопротивление арматуры сеток;

- коэффициент косвенного армирования сетками,

где - соответственно число стержней, площадь поперечного сечения и длина стержня сетки (в осях крайних стержней) в одном направлении (рис. 49, б);

- то же, в другом направлении;

Aef – площадь сечения бетона, заключенного внутри контура сеток;

s – расстояние между сетками;

φ – коэффициент эффективности косвенного армирования, определяемый по формуле:

, где , Rs,xyиRbв МПа.
8.5. Расчет прочности элементов на местное действие нагрузки

1. Местное сжатие (смятие).

При местном сжатии прочность бетона выше, чем обычно. Повышение прочности бетона зависит:

- от схемы приложения нагрузки;



- от вида бетона;

- от наличия косвенного армирования в месте локального приложения силы.



Проявление увеличения прочности в месте локального приложения силы встречается:

- при опирании колонны на фундамент;

- при опирании колонны на колонну;



- при опирании балок на стены;



- при опирании колонн или других элементов на опорные плиты (плиты перекрытия, фундаментные плиты).
Расчет прочности элементов на местное сжатие (смятие):

а) элементы без косвенного армирования:

Условие прочности: ,

где ψ – коэффициент, зависящий от характера распределения местной нагрузки; при равномерно распределенной нагрузке ψ = 1, при неравномерном (под концами балок, прогонов, перемычек) ψ = 0,75;

Rb,loc – расчетное сопротивление бетона смятию, определяемое по формуле: , где α – зависит от класса бетона, , Aloc1 – площадь смятия, Aloc2 – расчетная площадь смятия, включает участок, симметричный по отношению к площади смятия (схемы для определения Aloc2приведены в СНиП 2.03.01-84* «Бетонные и железобетонные конструкции»).
б) элементы с косвенным армированием в виде сварных поперечных сеток:

Условие прочности: ,

где Rb,red – приведенная призменная прочность бетона при расчете на местное сжатие, определяемое по формуле: , где Rs,xy – расчетное сопротивление арматуры сеток, МПа; φ – коэффициент эффективности косвенного армирования, определяемый по формуле: , где ; - коэффициент косвенного армирования сетками, где - соответственно число стержней, площадь поперечного сечения и длина стержня сетки (в осях крайних стержней) в одном направлении; - то же, в другом направлении; , но не более 3,5, Aloc1 – площадь смятия, Aloc2 – расчетная площадь смятия, включает участок, симметричный по отношению к площади смятия; φs – коэффициент, учитывающий влияние косвенного армирваония в зоне местного сжатия, зависит от схемы приложения местной нагрузки.

2. Продавливание.

Расчет на продавливание производят для следующих конструкций:

- плиты при локальном приложении нагрузки;

- фундаменты под колонны;

- свайные ростверки.

Продавливание может возникнуть в конструкциях, когда к ним приложена нагрузка на ограниченной площади. Продавливание происходит по боковой поверхности пирамиды, грани которой наклонены под углом 450 (рис.50). Продавливанию сопротивляется бетон, работающий на срез с расчетным сопротивлением, равным Rbt. Очевидно, что чем выше класс бетона и чем больше площадь боковой поверхности пирамиды, тем выше сопротивление продавливанию.

Условие прочности:

,

г
Рис. 50. Пирамида продавливания

де F – продавливающая сила (принимается равной силе, действующей на пирамиду продавливания, за вычетом нагрузок, приложенных к большему основанию по плоскости расположения растянутой арматуры); α – коэффициент, зависящий от вида бетона (для тяжелого бетона α = 1); um – среднеарифметическое значений периметров верхнего и нижнего оснований пирамиды, образующейся при продавливании в пределах рабочей высоты сечения.

Если условие прочности не соблюдается, а увеличить Rbt или h0нет возможности, то устанавливают хомуты, нормальные к плоскости плиты, а расчет производят из условия:

, но не более 2Fb,

где , Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани расчетной пирамиды продавливания, по формуле , где Rsw = 175 МПа независимо от класса стали.


Лекция №9. Растянутые элементы

9.1. Конструктивные особенности

Центрально-растянутые элементы – это элементы, в нормальном сечении которых точка приложения продольной растягивающей силы N совпадает с точкой приложения равнодействующей усилий в продольной арматуре.

К центрально-растянутым элементам относятся затяжки арок, нижние пояса и нисходящие раскосы ферм и другие элементы (рис. 51).



Рис. 51. Центрально-растянутые элементы.
Центрально-растянутые элементы проектируют, как правило, предварительно-напряженными.

Основные принципы конструирования центрально-растянутых элементов:

- стержневую рабочую арматуру без предварительного напряжения соединяют по длине сваркой;

- стыки внахлестку без сварки допускаются только в плитных и стеновых конструкциях;

- растянутая предварительно-напряженная арматура в линейных элементах не должна иметь стыков;

- в поперечном сечении предварительно напряженную арматуру размещают симметрично (чтобы избежать внецентренного обжатия элемента);

Внецентренно-растянутые элементы – это элементы, которые одновременно растягиваются продольной силой N и изгибаются моментом М, что равносильно внецентренному растяжению силой N с эксцентриситетом eoотносительно продольной оси элемента. При этом различают 2 случая: когда продольная растягивающая сила N приложена между равнодействующими усилий в растянутой и сжатой арматуре, и положение, когда сила приложена за пределами данного расстояния.

К внецентренно-растянутым элементам относятся нижние пояса безраскосных ферм и другие конструкции.

Внецентренно-растянутые элементы армируют аналогично изгибаемым элементам, а при положении N в пределах сечения – аналогично армированию центрально-растянутых элементов.

Внецентренно-растянутые также обычно подвергаются предварительному напряжению, что существенно повышает их трещиностойкость.


9.2. Расчет прочности центрально-растянутых элементов

Разрушение центрально-растянутых элементов происходит после того, как в бетоне образуются сквозные трещины, и он выключится из работы, а в арматуре напряжения достигнут предела текучести.

Несущая способность центрально-растянутого элемента обусловлена предельным сопротивлением арматуры без участия бетона:

,

где Rs– расчетное сопротивление арматуры растяжению,

As,tot – площадь сечения всей продольной арматуры.

9.3. Расчет прочности внецентренно-растянутых элементов

Расчет должен производиться в зависимости от положения продольной силы N.

Случай малых эксцентриситетов (продольная сила N приложена между равнодействующими усилий в растянутой и сжатой арматуре (рис. 52)).





Рис. 52. Расчетная схема внецентренно-растянутого элемента с малым эксцентриситетом

В этом случае всё сечение растянуто. В предельном состоянии в бетоне образуются сквозные поперечные трещины. Бетон в работе не участвует. Разрушение элемента происходит, когда напряжения в продольной арматуре достигнут предельного значения:

; .
Случай больших эксцентриситетов (продольная сила N приложена за пределами расстояния между равнодействующими усилий в растянутой и сжатой арматуре (рис. 53)).


Как и при изгибе, часть сечения сжата, а часть растянута. Вследствие образования трещин в бетоне растянутой зоны растягивающие усилия воспринимаются арматурой.

Рис. 53. Расчетная схема внецентренно-растянутого элемента с большим эксцентриситетом



Несущая способность элемента обусловлена предельным сопротивлением растяжению арматуры растянутой зоны, а также предельным сопротивлением сжатию бетона и арматуры сжатой зоны:

;

при этом высота сжатой зоны x определяется из условия .

Если полученное значение , в условие прочности подставляется .

Приложение 1














0,01

0,995

0,01

0,36

0,82

0,295

0,02

0,99

0,02

0,37

0,815

0,301

0,03

0,985

0,03

0,38

0,81

0,309

0,04

0,98

0,039

0,39

0,805

0,314

0,05

0,975

0,048

0,4

0,8

0,32

0,06

0,97

0,058

0,41

0,795

0,326

0,07

0,965

0,067

0,42

0,79

0,332

0,08

0,96

0,077

0,43

0,785

0,337

0,09

0,955

0,085

0,44

0,78

0,343

0,1

0,95

0,095

0,45

0,775

0,349

0,11

0,945

0,104

0,46

0,77

0,354

0,12

0,94

0,113

0,47

0,765

0,359

0,13

0,935

0,121

0,48

0,76

0,365

0,14

0,93

0,13

0,49

0,755

0,37

0,15

0,925

0,139

0,5

0,75

0,375

0,16

0,92

0,147

0,51

0,745

0,38

0,17

0,915

0,155

0,52

0,74

0,385

0,18

0,91

0,164

0,53

0,735

0,39

0,19

0,905

0,172

0,54

0,73

0,394

0,2

0,9

0,18

0,55

0,725

0,399

0,21

0,895

0,188

0,56

0,72

0,403

0,22

0,89

0,196

0,57

0,715

0,408

0,23

0,885

0,203

0,58

0,71

0,412

0,24

0,88

0,211

0,59

0,705

0,416

0,25

0,875

0,219

0,6

0,7

0,42

0,26

0,87

0,226

0,61

0,695

0,424

0,27

0,865

0,236

0,62

0,69

0,428

0,28

0,86

0,241

0,63

0,685

0,432

0,29

0,855

0,248

0,64

0,68

0,435

0,3

0,85

0,255

0,65

0,675

0,439

0,31

0,845

0,262

0,66

0,67

0,442

0,32

0,84

0,269

0,67

0,665

0,446

0,33

0,835

0,275

0,68

0,66

0,449

0,34

0,83

0,282

0,69

0,655

0,452

0,35

0,825

0,289

0,7

0,65

0,455
1   2   3   4   5   6   7   8   9


написать администратору сайта