КУРС ЛЕКЦИЙ ПО ФИЗИОЛОГИИ. Курс лекций по нормальной физиологии. Ю. И. Савченков. Красноярск Издво , 2012, 470 с
Скачать 8.61 Mb.
|
ЛЕКЦИЯ 10. ФИЗИОЛОГИЯ ПЕРЕДНЕГО МОЗГА. ФИЗИОЛОГИЯ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ.10.1. мозговые системы произвольных и непроизвольных движений (Пирамидная и экстрапирамидная системы): главные структуры, функции.По А. Р. Лурия, реальным анатомическим и функциональным образованием, включенным в реализацию двигательного акта, помимо собственно моторных зон, является почти вся кора больших полушарий. К эфферентным механизмам исполнения движений традиционно относят две взаимосвязанные, но относительно автономные системы — экстрапирамидную и пирамидную, корковые отделы которых составляют единую сенсомоторную зону коры. Экстрапирамидная система является филогенетически более ранней и обеспечивает сравнительно простые автоматизированные движения. Она управляет в основном непроизвольным компонентом движений, к которому относятся поддержание позы, регуляция физиологического тремора, физиологические синергии, общая согласованность двигательных актов, их интеграция и пластичность. Объем подобных движений по сравнению с произвольными составляет порядка 90%. Структурный состав экстрапирамидной системы среди исследователей окончательно не согласован. Традиционно в ней различают корковый и подкорковый отделы. К первому относят 6-е, 8-е поля премоторной коры и 1-е и 2-е поля сенсомоторной области. Подкорковый отдел сложен и включает в себя стриопаллидарную систему, некоторые ядра таламуса, красное ядро и черную субстанция ножек мозга, мозжечок и ретикулярную формацию рродолговатого мозга. Выход экстрапирамидной системы в спинной мозг осуществляется через красное ядро (в нем происходит подключение регулирующих влияний от мозжечка, промежуточного мозга и подкорковых ядер). Заканчивается эта проводящая система на передних рогах спинного мозга. Помимо миостатической функции, стриопаллидарная система обеспечивает готовность мышц к выполнению произвольных движений. В нормальных условиях функционирования головного мозга работа стриопаллидарной системы внешне незаметна, так как она является органической составляющей любого двигательного акта. Именно стриопаллидарная система делает двигательный акт плавным, гибким, точно соразмерным во времени, пространстве, обеспечивает оптимальную позу тела и наиболее выгодное положение отдельных мышечных групп для выполнения движения. Моделью работы рано созревающего и еще не контролируемого корой паллидарного комплекса являются беспорядочные, нецеленаправленные движения бодрствующего ребенка первых месяцев жизни. С развитием коры все активные движения в основном начинают регулироваться ею — возрастают их координированность, точность, логическая упорядоченность, появляется согласованность кинетических фрагментов с конечным результатом. Поражения подкорковой части экстрапирамидной системы приводят к патологии двух родов — к динамическим нарушениям (собственно движений) и статическим нарушениям (позы). В
клинике различают заболевания, обусловленные поражением преимущественно филогенетически старой или новой части экстрапирамидной системы. Новая часть экстрапирамидной системы (неостриатум) оказывает в основном тормозящее влияние на старую (паллидарную), поэтому при выпадении или снижении функции неостриатума старая часть экстрапирамидной системы как бы растормаживается и у больного на фоне сниженного тонуса мускулатуры (атонии) и общей неподвижности (адинамии) появляются насильственные движения в руке, ноге или головой (гиперкинезы). Возможно появление насильственного смеха или плача. Эти, иногда сложные, гиперкинезы никогда не складываются в целенаправленные координированные действия, хотя внешне могут напоминать умышленное гримасничанье, кривляние и нарочитые ужимки. К числу гиперкинетических расстройств относят и тики — стереотипно повторяющиеся клонические судороги одной мышцы или группы мышц, обычно мышц шеи и лица. Больной подергивает шеей, как бы поправляя воротник, запрокидывает голову, как бы поправляя волосы, поднимает вверх плечо, совершает мигательные движения, морщит лоб, поднимает и опускает брови и т. п. Красное ядро Рис. 12. Структура эстрапирамидной системы При поражении старого отдела экстрапирамидной системы возникает противоположная картина. У больных появляется скованность (ригидность), бедность и замедленность движений (брадикинезия) и речи (брадипалия) при одновременном повышении тонуса мускулатуры — синдрома паркинсонизма, сопровождающегося жестикуляторной и мимической ограниченностью в виде маскообразного лица. На этом фоне наблюдается тремор пальцев рук, нередко захватывающий нижнюю челюсть и язык. Несмотря на удовлетворительную силу мышц, больные испытывают затруднение при переходе из покоя в движение и наоборот. При поражениях экстрапирамидной системы также возникают нарушения мышечного тонуса, составляющего основу позы, — происходит застывание в определенной позе (поза манекена). Больному трудно сделать первое движение, затем он может «разойтись» и двигаться быстрее, но мелкими шажками. При желании остановиться не всегда способен это реализовать и некоторое время движется вперед или в стороны. Патология бледного шара и черной субстанции ножек мозга приводит к нарушению пластического тонуса мышц (при исполнении движений возникает феномен «зубчатого колеса» — при медленном разгибании предплечья или голени в сгибателях ощущается не равномерное сопротивление, а прерывистое), а патология мозжечка как одной из структур экстрапирамидной системы — к расстройствам координации двигательных актов (атаксии). Пирамидная система (кортико-спинальный путь) начинается от моторных (крупных пирамидных) клеток Беца, находящихся в основном в 5-м слое моторной коры 4-го поля передней центральной извилины. Это первичное поле, различные участки которого связаны с иннервацией соответствующих групп мышц. Кроме того, моторные клетки Беца обнаруживаются в 6-х и в 8-х полях прецентральной зоны коры и даже в некоторых постцентральных отделах, что расширяет традиционные представления о корковом начале пирамидного пути. Помимо обычных (стимулирующих) в пирамидной системе обнаружены и корковые зоны, раздражение которых приводит к прекращению уже начавшихся движений. Аксоны клеток Беца, покинув кору, через внутреннюю капсулу спускаются в ножки мозга, пронизывают варолиев мост, продолговатый мозг, где на его передней поверхности образуют два выпуклых валика (пирамиды), в нижней части которых производят неполный перекрест. Перекрещенная в пирамидах часть волокон (первая группа) попадает в боковые столбы спинного мозга и, переключаясь на вставочные нейроны или непосредственно на мотонейроны передних рогов спинного мозга, в дальнейшем обслуживает практически весь двигательный аппарат. Неперекрещенная часть волокон (вторая группа) спускается преимущественно до шейных и грудных сегментов спинного мозга, лишь на их уровне переходя на другую сторону. Этот поток аксонов функционально связан с управлением мышцами шеи, туловища и промежности. Таким образом, моторные зоны коры левого полушария в подавляющем большинстве случаев являются аппаратом двигательной иннервации правой половины тела и наоборот, а правого полушария — левой. У человека количество перекрещивающихся волокон, по современным данным, варьирует в довольно широких пределах, и многие волокна могут идти от корковых клеток к спинному мозгу без перекреста. Кроме того, в составе пирамидного пути имеются волокна с двойным перекрестом — на уровне мозолистого тела и в продолговатом мозгу. Эти морфологические особенности создают возможность корковой иннервации двигательного аппарата на той же стороне тела и играют позитивную роль в компенсаторных процессах при локальных поражениях мозга. Третья группа волокон пирамидной системы, после частичного перекреста на уровне среднего мозга, варолиева моста и продолговатого мозга, заканчивается на двигательных ядрах черепно-мозговых нервов, связанных с иннервацуией скелетеых мышц головы и шеи, в том числе мышц артикуляторного аппарата. Ядра этих нервов получают волокна от двигательных зон коры обоих полушарий, за исключением нервов (двух из двенадцати), иннервирующих мимические мышцы лица, расположенные ниже глазной щели, и мьшщы языка. К этим ядрам подходят волокна только от противоположного полушария (нижнего отдела передней центральной извилины). Наличие двухсторонней корковой иннервации обеспечивает сохранность функций большинства мышц лица (глазодвигательных, жевательных мышц глотки, гортани и др.) при односторонних патологических процессах. Пирамидная система участвует в организации преимущественно точных, дискретных, дозированных, пространственно-ориентированных движений, в подавлении мышечного тонуса и полностью подчинена произвольному контролю. Выпадение функций пирамидного пути проявляется в невозможности произвольных движений. Независимо от того, на каком уровне повреждается связь между передней центральной извилиной и «обслуживаемой» мышцей, последняя перестает сокращаться и наступает ее парез (ослабление) или паралич (полная утрата способности к произвольному движению) на стороне тела, противоположной очагу поражения. Характер паралича оказывается различным в зависимости от локализации повреждения. Повышение мышечного тонуса — основной признак центрального паралича, получившего название спастического. Периферические поражения вызывают вялый атонический паралич. Полное одностороннее выпадение движений руки и ноги (гемиплегия) появляется при обширных очагах, затрагивающих переднюю центральную извилину. Однако через некоторое время утраченные движения могут до определенной степени восстановиться за счет деятельности других нисходящих систем, связывающих кору головного мозга со спинным мозгом и способных дублировать функции пирамидной системы. Частично потерянными остаются лишь тонкие движения пальцев. Пирамидная система не может работать изолированно и нуждается в тоническом пластическом фоне, обеспечиваемом экстрапирамидной системой. |