Практическая работа. Курс лекций. Раздел Информационная безопасность и уровни ее обеспечения 5 Тема Понятие "информационная безопасность" 6 1 Введение 6 1 Проблема информационной безопасности общества 7
Скачать 1.23 Mb.
|
Тема 3.6. Типовые удаленные атаки и их характеристика3.6.1. ВведениеЦели изучения темы изучить механизм реализации типовых удаленных атак и их характеристику. Требования к знаниям и умениям Студент должен знать: типовые удаленные атаки и механизмы их реализации. Студент должен уметь: классифицировать типовые удаленные атаки по совокупности признаков. План изложения материала Удаленная атака "анализ сетевого трафика". Удаленная атака "подмена доверенного объекта". Удаленная атака "ложный объект". Удаленная атака "отказ в обслуживании". Ключевой термин Ключевой термин: типовая удаленная атака. Типовая удаленная атака – это удаленное информационное разрушающее воздействие, программно осуществляемое по каналам связи и характерное для любой распределенной вычислительной сети. Второстепенные термины удаленная атака "анализ сетевого трафика"; удаленная атака "подмена доверенного объекта"; удаленная атака "ложный объект"; удаленная атака "отказ в обслуживании". Структурная схема терминов Как уже было показано ранее, распределенные вычислительные сети проектируются на основе одних и тех же принципов, а, следовательно, имеют практически одинаковые проблемы безопасности, причем, в большинстве случаев, независимо от используемых сетевых протоколов, топологии и инфраструктуры вычислительной сети. С учетом этого специалисты в области информационной безопасности используют понятие типовой удаленной угрозы (атаки), характерной для любых распределенных вычислительных сетей. Введение этого понятия в совокупности с описанием механизмов реализации типовых удаленных угроз позволяет выработать методику исследования безопасности вычислительных сетей, заключающуюся в последовательной умышленной реализации всех типовых удаленных угроз и наблюдению за поведением системы. Типовая удаленная атака – это удаленное информационное разрушающее воздействие, программно осуществляемое по каналам связи и характерное для любой распределенной вычислительной сети. 3.6.2. Удаленная атака "анализ сетевого трафика"Основной особенностью распределенной вычислительной сети является распределенность ее объектов в пространстве и связь между ними по физическим линиям связи. При этом все управляющие сообщения и данные, пересылаемые между объектами вычислительной сети, передаются по сетевым соединениям в виде пакетов обмена. Эта особенность привела к появлению специфичного для распределенных вычислительных сетей типового удаленного воздействия, заключающегося в прослушивании канала связи, называемого анализом сетевого трафика. Анализ сетевого трафика позволяет: изучить логику работы распределенной вычислительной сети, это достигается путем перехвата и анализа пакетов обмена на канальном уровне (знание логики работы сети позволяет на практике моделировать и осуществлять другие типовые удаленные атаки); перехватить поток данных, которыми обмениваются объекты сети, т. е. удаленная атака данного типа заключается в получении несанкционированного доступа к информации, которой обмениваются пользователи (примером перехваченной при помощи данной типовой удаленной атаки информации могут служить имя и пароль пользователя, пересылаемые в незашифрованном виде по сети). По характеру воздействия анализ сетевого трафика является пассивным воздействием (класс 1.1). Осуществление данной атаки без обратной связи (класс 4.2) ведет к нарушению конфиденциальности информации (класс 2.1) внутри одного сегмента сети (класс 5.1) на канальном уровне OSI (класс 6.2). При этом начало осуществления атаки безусловно по отношению к цели атаки (класс 3.3). 3.6.3. Удаленная атака "подмена доверенного объекта"Одной из проблем безопасности распределенной ВС является недостаточная идентификация и аутентификация (определение подлинности) удаленных друг от друга объектов. Основная трудность заключается в осуществлении однозначной идентификации сообщений, передаваемых между субъектами и объектами взаимодействия. Обычно в вычислительных сетях эта проблема решается использованием виртуального канала, по которому объекты обмениваются определенной информацией, уникально идентифицирующей данный канал. Для адресации сообщений в распределенных вычислительных сетях используется сетевой адрес, который уникален для каждого объекта системы (на канальном уровне модели OSI – это аппаратный адрес сетевого адаптера, на сетевом уровне – адрес определяется протоколом сетевого уровня (например, IP-адрес). Сетевой адрес также может использоваться для идентификации объектов сети. Однако сетевой адрес достаточно просто подделывается и поэтому использовать его в качестве единственного средства идентификации объектов недопустимо. В том случае, когда в вычислительной сети использует нестойкие алгоритмы идентификации удаленных объектов, то оказывается возможной типовая удаленная атака, заключающаяся в передаче по каналам связи сообщений от имени произвольного объекта или субъекта сети (т. е. подмена объекта или субъекта сети). Подмена доверенного объекта распределенной вычислительной сети является активным воздействием (класс 1.2), совершаемым с целью нарушения конфиденциальности (класс 2.1) и целостности (класс 2.2) информации, по наступлению на атакуемом объекте определенного события (класс 3.2). Данная удаленная атака может являться как внутрисегментной (класс 5.1), так и межсегментной (класс 5.2), как с обратной связью (класс 4.1), так и без обратной связи (класс 4.2) с атакуемым объектом и осуществляется на сетевом (класс 6.3) и транспортном (класс 6.4) уровнях модели OSI. 3.6.4. Удаленная атака "ложный объект"Принципиальная возможность реализации данного вида удаленной атаки в вычислительных сетях также обусловлена недостаточно надежной идентификацией сетевых управляющих устройств (например, маршрутизаторов). Целью данной атаки является внедрение в сеть ложного объекта путем изменения маршрутизации пакетов, передаваемых в сети. Внедрение ложного объекта в распределенную сеть может быть реализовано навязыванием ложного маршрута, проходящего через ложный объект. Современные глобальные сети представляют собой совокупность сегментов сети, связанных между собой через сетевые узлы. При этом маршрутом называется последовательность узлов сети, по которой данные передаются от источника к приемнику. Каждый маршрутизатор имеет специальную таблицу, называемую таблицей маршрутизации, в которой для каждого адресата указывается оптимальный маршрут. Таблицы маршрутизации существуют не только у маршрутизаторов, но и у любых хостов (узлов) в глобальной сети. Для обеспечения эффективной и оптимальной маршрутизации в распределенных ВС применяются специальные управляющие протоколы, позволяющие маршрутизаторам обмениваться информацией друг с другом (RIP (Routing Internet Protocol), OSPF (Open Shortest Path First)), уведомлять хосты о новом маршруте – ICMP (Internet Control Message Protocol), удаленно управлять маршрутизаторами (SNMP (Simple Network Management Protocol)). Эти протоколы позволяют удаленно изменять маршрутизацию в сети Интернет, то есть являются протоколами управления сетью. Реализация данной типовой удаленной атаки заключается в несанкционированном использовании протоколов управления сетью для изменения исходных таблиц маршрутизации. В результате успешного изменения маршрута атакующий получит полный контроль над потоком информации, которой обмениваются объекты сети, и атака перейдет во вторую стадию, связанную с приемом, анализом и передачей сообщений, получаемых от дезинформированных объектов вычислительной сети. Навязывание ложного маршрута – активное воздействие (класс 1.2), совершаемое с любой из целей из класса 2, безусловно по отношению к цели атаки (класс 3.3). Данная типовая удаленная атака может осуществляться как внутри одного сегмента (класс 5.1), так и межсегментно (класс 5.2), как с обратной связью (класс 4.1), так и без обратной связи с атакуемым объектом (класс 4.2) на транспортном (класс 6.3) и прикладном (класс 6.7) уровне модели OSI. Получив контроль над проходящим потоком информации между объектами, ложный объект вычислительной сети может применять различные методы воздействия на перехваченную информацию, например: селекция потока информации и сохранение ее на ложном объекте (нарушение конфиденциальности); модификация информации: модификация данных (нарушение целостности), модификация исполняемого кода и внедрение разрушающих программных средств – программных вирусов (нарушение доступности, целостности); подмена информации (нарушение целостности). 3.6.5. Удаленная атака "отказ в обслуживании"Одной из основных задач, возлагаемых на сетевую операционную систему, функционирующую на каждом из объектов распределенной вычислительной сети, является обеспечение надежного удаленного доступа с любого объекта сети к данному объекту. В общем случае в сети каждый субъект системы должен иметь возможность подключиться к любому объекту сети и получить в соответствии со своими правами удаленный доступ к его ресурсам. Обычно в вычислительных сетях возможность предоставления удаленного доступа реализуется следующим образом: на объекте в сетевой операционной системе запускаются на выполнение ряд программ-серверов (например, FTP-сервер, WWW-сервер и т. п.), предоставляющих удаленный доступ к ресурсам данного объекта. Данные программы-серверы входят в состав телекоммуникационных служб предоставления удаленного доступа. Задача сервера состоит в том, чтобы постоянно ожидать получения запроса на подключение от удаленного объекта и, получив такой запрос, передать на запросивший объект ответ, в котором либо разрешить подключение, либо нет. По аналогичной схеме происходит создание виртуального канала связи, по которому обычно взаимодействуют объекты сети. В этом случае непосредственно операционная система обрабатывает приходящие извне запросы на создание виртуального канала и передает их в соответствии с идентификатором запроса (номер порта) прикладному процессу, которым является соответствующий сервер. В зависимости от различных параметров объектов вычислительной сети, основными из которых являются быстродействие ЭВМ, объем оперативной памяти и пропускная способность канала связи – количество одновременно устанавливаемых виртуальных подключений ограничено, соответственно, ограничено и число запросов, обрабатываемых в единицу времени. С этой особенностью работы вычислительных сетей связана типовая удаленная атака "отказ в обслуживании". Реализация этой угрозы возможна, если в вычислительной сети не предусмотрено средств аутентификации (проверки подлинности) адреса отправителя. В такой вычислительной сети возможна передача с одного объекта (атакующего) на другой (атакуемый) бесконечного числа анонимных запросов на подключение от имени других объектов. Результат применения этой удаленной атаки – нарушение на атакованном объекте работоспособности соответствующей службы предоставления удаленного доступа, то есть невозможность получения удаленного доступа с других объектов вычислительной сети – отказ в обслуживании. Одна из разновидностей этой типовой удаленной атаки заключается в передаче с одного адреса такого количества запросов на атакуемый объект, какое позволяет трафик. В этом случае, если в системе не предусмотрены правила, ограничивающие число принимаемых запросов с одного объекта (адреса) в единицу времени, то результатом этой атаки может являться как переполнение очереди запросов и отказа одной из телекоммуникационных служб, так и полная остановка компьютера из-за невозможности системы заниматься ничем другим, кроме обработки запросов. И последней, третьей разновидностью атаки "отказ в обслуживании" является передача на атакуемый объект некорректного, специально подобранного запроса. В этом случае при наличии ошибок в удаленной системе возможно зацикливание процедуры обработки запроса, переполнение буфера с последующим зависанием системы. Типовая удаленная атака "отказ в обслуживании" является активным (класс 1.2) однонаправленным воздействием (класс 4.2), осуществляемым с целью нарушения работоспособности системы (класс 2.3) на транспортном (класс 6.4) и прикладном (класс 6.7) уровнях модели OSI. 3.6.6. Выводы по темеТиповая удаленная атака – это удаленное информационное разрушающее воздействие, программно осуществляемое по каналам связи и характерное для любой распределенной вычислительной сети. Анализ сетевого трафика заключается в прослушивании канала связи. По характеру воздействия анализ сетевого трафика является пассивным воздействием (класс 1.1). Осуществление данной атаки без обратной связи (класс 4.2) ведет к нарушению конфиденциальности информации (класс 2.1) внутри одного сегмента сети (класс 5.1) на канальном уровне OSI (класс 6.2). При этом начало осуществления атаки безусловно по отношению к цели атаки (класс 3.3). Одной из проблем безопасности распределенной ВС является недостаточная идентификация и аутентификация (определение подлинности) удаленных друг от друга объектов. В том случае, когда в вычислительной сети используют нестойкие алгоритмы идентификации удаленных объектов, оказывается возможной типовая удаленная атака, заключающаяся в передаче по каналам связи сообщений от имени произвольного объекта или субъекта сети (т. е. подмена объекта или субъекта сети). Подмена доверенного объекта распределенной вычислительной сети является активным воздействием (класс 1.2), совершаемым с целью нарушения конфиденциальности (класс 2.1) и целостности (класс 2.2) информации, по наступлению на атакуемом объекте определенного события (класс 3.2). Данная удаленная атака может являться как внутрисегментной (класс 5.1), так и межсегментной (класс 5.2), как с обратной связью (класс 4.1), так и без обратной связи (класс 4.2) с атакуемым объектом и осуществляется на сетевом (класс 6.3) и транспортном (класс 6.4) уровнях модели OSI. Целью удаленной атаки "ложный объект" является внедрение в сеть ложного объекта путем изменения маршрутизации пакетов, передаваемых в сети. Внедрение ложного объекта в распределенную сеть может быть реализовано навязыванием ложного маршрута, проходящего через ложный объект. Навязывание ложного маршрута – активное воздействие (класс 1.2), совершаемое с любой из целей из класса 2, безусловно по отношению к цели атаки (класс 3.3). Данная типовая удаленная атака может осуществляться как внутри одного сегмента (класс 5.1), так и межсегментно (класс 5.2), как с обратной связью (класс 4.1), так и без обратной связи с атакуемым объектом (класс 4.2) на транспортном (класс 6.3) и прикладном (класс 6.7) уровне модели OSI. Целью удаленной атаки "отказ в обслуживании" является нарушение работоспособности соответствующего узла сети или сервиса, предоставляемого им другим пользователям. Типовая удаленная атака "отказ в обслуживании" является активным (класс 1.2) однонаправленным воздействием (класс 4.2), осуществляемым с целью нарушения работоспособности системы (класс 2.3) на транспортном (класс 6.4) и прикладном (класс 6.7) уровнях модели OSI. 3.6.7. Вопросы для самоконтроляДайте определение типовой удаленной атаки. Механизм реализации удаленной атаки "анализ сетевого трафика". Что является целью злоумышленников при "анализе сетевого трафика"? Назовите причины успеха удаленной атаки "ложный объект". Охарактеризуйте удаленную атаку "подмена доверенного объекта" по классам угроз. Поясните возможные механизмы реализации удаленной атаки "отказ в обслуживании". Какие составляющие "информационной безопасности" могут быть нарушены при реализации каждой из типовых удаленных атак? 3.6.8. Расширяющий блокХарактеристика типовых удаленных атак Таблица 3.6.1. Общая характеристика типовых удаленных атак
3.6.9. Ссылки на дополнительные материалы (печатные и электронные ресурсы)Основные: Медведовский И.Д., Семьянов П.В., Леонов Д.Г., Лукацкий А.В. Атака из Internet. – М.: Солон-Р, 2002. Галатенко В. А. Основы информационной безопасности. – М: Интернет-Университет Информационных Технологий - ИНТУИТ.РУ, 2003. Щербаков А. Ю. Введение в теорию и практику компьютерной безопасности. – М.: Издательство Молгачева С. В., 2001. В. Г. Олифер, Н. А. Олифер. Компьютерные сети. Принципы, технологии, протоколы. – СПб: Питер, 2000. www.jetinfo.ru. Тема 3.7. Причины успешной реализации удаленных угроз в вычислительных сетях3.7.1. ВведениеЦели изучения темы изучить причины успешной реализации удаленных угроз в вычислительных сетях; определить возможные способы защиты. Требования к знаниям и умениям Студент должен знать: причины успешной реализации удаленных угроз информационной безопасности в вычислительных сетях. Студент должен уметь: анализировать причины успеха удаленных атак и принимать меры к их устранению. Ключевой термин Ключевой термин: причины успешной реализации удаленных угроз в вычислительных сетях. Причины успешной реализации удаленных угроз в вычислительных сетях. Выявление причин успеха удаленных атак является первым этапом построения защищенных вычислительных сетей. Структурная схема терминов В предыдущих темах были рассмотрены основные угрозы информационной безопасности в распределенных вычислительных сетях. Возможность осуществления рассмотренных угроз обусловлена как программно-техническими недостатками архитектуры современных вычислительных сетей, так и несоблюдением требований безопасности. Поэтому данная тема и будет посвящена рассмотрению причин успеха удаленных атак, что позволит в последствии в следующих темах рассмотреть принципы построения защищенных вычислительных сетей. Базовым принципом обеспечения информационной безопасности для любых объектов информационных отношений является борьба не с угрозами, являющимися следствием недостатков системы, а с причинами возможного успеха нарушений информационной безопасности. 3.7.2. Причины успешной реализации удаленных угроз в вычислительных сетяхПрименительно к вычислительным сетям, чтобы ликвидировать угрозы (удаленные атаки), осуществляемые по каналам связи, необходимо ликвидировать причины, их порождающие. Анализ механизмов реализации типовых удаленных атак позволяет сформулировать причины, по которым данные удаленные атаки оказались возможными. Отсутствие выделенного канала связи между объектами вычислительной сети. Данная причина обуславливает типовую удаленную атаку "анализ сетевого трафика". Такая атака программно возможна только в случае, если атакующий находится в сети с физически широковещательной средой передачи данных как, например, всем известная и получившая широкое распространение среда Ethernet (общая "шина"). Такая атака невозможна в сетях с топологией "звезда" (Token Ring), которая не является широковещательной, но и не имеет достаточного распространения. Анализ сетевого трафика программными средствами практически невозможен, если у каждого объекта системы существует для связи с любым другим объектом выделенный канал. Следовательно, причина успеха типовой удаленной атаки заключается в широковещательной среде передачи данных или отсутствие выделенного канала связи между объектами сети. Недостаточная идентификация объектов и субъектов сети неоднократно упоминались при рассмотрении удаленных угроз информационной безопасности. Эта причина предопределяет такие типовые удаленные атаки как "ложный объект" и "подмена доверенного объекта", а в некоторых случаях и "отказ в обслуживании". Взаимодействие объектов без установления виртуального канала – еще одна причина возможных угроз информационной безопасности. Объекты распределенных вычислительных сетей могут взаимодействовать двумя способами: с использованием виртуального канала; без использования виртуального канала. При создании виртуального канала объекты вычислительной сети обмениваются динамически вырабатываемой ключевой информацией, позволяющей уникально идентифицировать канал, тем самым подтверждается подлинность объектов информационного обмена друг перед другом. Однако ошибочно считать распределенную вычислительную сеть безопасной, даже если все взаимодействие объектов происходит с созданием виртуального канала. Виртуальный канал является необходимым, но не достаточным условием безопасного взаимодействия. Чрезвычайно важным в данном случае становится выбор алгоритма идентификации при создании виртуального канала. Так, например, отсутствие контроля за виртуальными каналами связи между объектами сети может привести к нарушению работоспособности системы путем формирования множества запросов на создание соединения (виртуального канала), в результате чего либо переполняется число возможных соединений, либо система, занятая обработкой ответов на запросы, вообще перестает функционировать (типовая удаленная атака "отказ в обслуживании"). В данном случае успех удаленной атаки возможен из-за отсутствия контроля при создании соединения, т. е. один узел анонимно или от имени другого узла сети формирует множество запросов, а система не имеет возможности фильтровать подобные запросы. Отсутствие в распределенных вычислительных сетях возможности контроля за маршрутом сообщений – еще одна из возможных причин успешной реализации удаленных угроз информационной безопасности. Если в вычислительных сетях не предусмотрены возможности контроля за маршрутом сообщения, то адрес отправителя сообщения оказывается ничем не подтвержден. Таким образом, в системе будет существовать возможность отправки сообщения от имени любого объекта системы, а именно, путем указания в заголовке сообщения чужого адреса отправителя. Также в таких сетях будет невозможно определить, откуда на самом деле пришло сообщение, а следовательно, вычислить координаты атакующего. Отсутствие в вычислительной сети контроля за маршрутом сообщений порождает как невозможность контроля за созданием соединений, так и возможность анонимной отправки сообщения, следовательно, является причиной успеха таких удаленных угроз, как "подмена доверенного объекта" и "ложный объект сети". Отсутствие в распределенных вычислительных сетях полной информации о ее объектах также является потенциальной причиной успеха удаленных угроз, поскольку в распределенной системе с разветвленной структурой, состоящей из большого числа объектов, может возникнуть ситуация, когда для доступа к определенному объекту системы у субъекта взаимодействия может не оказаться необходимой информации об интересующем объекте. Обычно такой недостающей информацией об объекте является его адрес. В этом случае осуществляется широковещательный запрос в сеть, на который реагирует искомый узел. Такая ситуация характерна особенно для сети Интернет, при работе в которой пользователь знает доменное имя узла, но для соединения с ним необходим IP-адрес, поэтому при вводе доменного имени операционная система формирует запрос к серверу доменных имен. В ответ DNS сервер сообщает IP-адрес запрашиваемого узла. В такой схеме существует возможность выдачи ложного ответа на запрос пользователя, например, путем перехвата DNS-запроса пользователя и выдачей ложного DNS-ответа. В системе с заложенной в нее неопределенностью существуют потенциальные возможности внесения в систему ложного объекта и получение ложного ответа, в котором вместо информации о запрашиваемом объекте будет информация о ложном объекте. Примером распределенной вычислительной сети с заложенной неопределенностью является сеть Интернет. Во-первых, у узлов, находящихся в одном сегменте, может не быть информации об аппаратных адресах друг друга. Во-вторых, применяются непригодные для непосредственной адресации доменные имена узлов, используемые для удобства пользователей при обращении к удаленным системам. Отсутствие в распределенных вычислительных сетях криптозащиты сообщений – последняя из рассматриваемых в данной теме причин успеха удаленных угроз информационной безопасности. Поскольку в вычислительных сетях связь между объектами осуществляется по каналам связи, то всегда существует принципиальная возможность для злоумышленника прослушать канал и получить несанкционированный доступ к информации, которой обмениваются по сети ее абоненты. В том случае, если проходящая по каналу информация не зашифрована и атакующий каким-либо образом получает доступ к каналу, то удаленная атака "анализ сетевого трафика" является наиболее эффективным способом получения информации. Очевидна и причина, делающая эту атаку столь эффективной. Эта причина – передача по сети незашифрованной информации. 3.7.3. Выводы по темеБазовым принципом обеспечения информационной безопасности для любых объектов информационных отношений является борьба не с угрозами, являющимися следствием недостатков системы, а с причинами возможного успеха нарушений информационной безопасности. Причины успешной реализации удаленных угроз в вычислительных сетях: отсутствие выделенного канала связи между объектами вычислительной сети; недостаточная идентификация объектов и субъектов сети; взаимодействие объектов без установления виртуального канала; отсутствие контроля за виртуальными каналами связи между объектами сети; отсутствие в распределенных вычислительных сетях возможности контроля за маршрутом сообщений; отсутствие в распределенных вычислительных сетях полной информации о ее объектах; отсутствие в распределенных вычислительных сетях криптозащиты сообщений. 3.7.4. Вопросы для самоконтроляПеречислите основные причины успешной реализации удаленных угроз информационной безопасности в вычислительных сетях. Почему виртуальное соединение не обеспечивает требуемого уровня защиты вычислительных сетей? Какая из причин приводит к успеху удаленной угрозы "анализ сетевого трафика"? Что является следствием недостаточной аутентификации субъектов и объектов вычислительных сетей? К чему приводит недостаточность информации об объектах вычислительной сети? Приведите пример. Может ли быть нарушена целостность информации при отсутствии в распределенных вычислительных сетях возможности контроля за маршрутом сообщений? Почему? 3.7.5. Ссылки на дополнительные материалы (печатные и электронные ресурсы)Основные: Медведовский И.Д., Семьянов П.В., Леонов Д.Г., Лукацкий А.В. Атака из Internet. – М.: Солон-Р, 2002. Галатенко В. А. Основы информационной безопасности. – М: Интернет-Университет Информационных Технологий – ИНТУИТ.РУ, 2003. Щербаков А. Ю. Введение в теорию и практику компьютерной безопасности. – М.: Издательство Молгачева С. В., 2001. В. Г. Олифер, Н. А. Олифер. Компьютерные сети. Принципы, технологии, протоколы. – СПб: Питер, 2000. www.jetinfo.ru. Тема 3.8. Принципы защиты распределенных вычислительных сетей3.8.1. ВведениеЦели изучения темы изучить принципы построения защищенных вычислительных сетей и возможные механизмы защиты. Требования к знаниям и умениям Студент должен знать: принципы защиты распределенных вычислительных сетей. Студент должен уметь: использовать принципы защиты для разработки и реализации механизмов защиты вычислительных сетей. Ключевой термин Ключевой термин: принципы построения защищенных вычислительных сетей. Принципы построения защищенных вычислительных сетей по своей сути являются правилами построения защищенных систем, учитывающие, в том числе, действия субъектов вычислительной сети, направленные на обеспечение информационной безопасности. 3.8.2. Принципы построения защищенных вычислительных сетейВ предыдущих темах были рассмотрены основные угрозы информационной безопасности в распределенных вычислительных сетях и причины, следствием которых они являются. В данной теме рассмотрим принципы построения защищенных вычислительных сетей. Принципы построения защищенных вычислительных сетей по своей сути являются правилами построения защищенных систем, учитывающие, в том числе, действия субъектов вычислительной сети, направленные на обеспечение информационной безопасности. Напомним, что одним из базовых принципов обеспечения информационной безопасности для любых объектов информационных отношений является борьба не с угрозами, являющимися следствием недостатков системы, а с причинами возможного успеха нарушений информационной безопасности. Перечислим установленные ранее причины успеха удаленных угроз информационной безопасности: Отсутствие выделенного канала связи между объектами вычислительной сети. Недостаточная идентификация объектов и субъектов сети. Взаимодействие объектов без установления виртуального канала. Отсутствие контроля за виртуальными каналами связи между объектами сети. Отсутствие в распределенных вычислительных сетях возможности контроля за маршрутом сообщений. Отсутствие в распределенных вычислительных сетях полной информации о ее объектах. Отсутствие в распределенных вычислительных сетях криптозащиты сообщений. Для устранения первой причины ("отсутствие выделенного канала...") идеальным случаем было бы установление выделенных каналов связи между всеми объектами сети. Однако это практически невозможно и нерационально, в первую очередь, из-за высокой стоимости такой топологии вычислительной сети. Существуют два возможных способа организации топологии распределенной вычислительной сети с выделенными каналами. В первом случае каждый объект связывается физическими линиями связи со всеми объектами системы. Во втором случае в системе может использоваться сетевой концентратор, через который осуществляется связь между объектами (топология "звезда"). Преимущества сети с выделенным каналом связи между объектами заключаются: в передаче сообщений напрямую между источником и приемником, минуя остальные объекты системы; в возможности идентифицировать объекты распределенной системы на канальном уровне по их адресам без использования специальных криптоалгоритмов шифрования трафика; в отсутствии неопределенности информации о ее объектах, поскольку каждый объект в такой системе изначально однозначно идентифицируется и обладает полной информацией о других объектах системы. Недостатки сети с выделенными каналами: сложность реализации и высокие затраты на создание; ограниченное число объектов системы (зависит от числа входов у концентратора). Альтернативой сетям с выделенным каналом являются сети с широковещательной передачей данных, надежная идентификация объектов в которых может обеспечиваться использованием специальных криптокарт, осуществляющих шифрование на канальном уровне. Отметим, что создание распределенных систем только с использованием широковещательной среды передачи или только с выделенными каналами неэффективно, поэтому представляется правильным при построении распределенных вычислительных сетей с разветвленной топологией и большим числом объектов использовать комбинированные варианты соединений объектов. Для обеспечения связи между объектами большой степени значимости можно использовать выделенный канал. Связь менее значимых объектов системы может осуществляться с использованием комбинации "общая шина" – выделенный канал. Безопасная физическая топология сети (выделенный канал) является необходимым, но не достаточным условием устранения причин угроз информационной безопасности, поэтому необходимы дополнительные меры по повышению защищенности объектов вычислительных сетей. Дальнейшее повышение защищенности вычислительных сетей связано с использованием виртуальных каналов, обеспечивающих дополнительную идентификацию и аутентификацию объектов вычислительной сети. Для повышения защищенности вычислительных сетей при установлении виртуального соединения необходимо использовать криптоалгоритмы с открытым ключом (рассмотрим далее). Одной из разновидностей шифрования с открытым ключом является цифровая подпись сообщений, надежно идентифицирующая объект распределенной вычислительной сети и виртуальный канал. Отсутствие контроля за маршрутом сообщения в сети является одной из причин успеха удаленных угроз. Рассмотрим один из вариантов устранения этой причины. Все сообщения, передаваемые в распределенных сетях, проходят по цепочке маршрутизаторов, задачей которых является анализ адреса назначения, выбор оптимального маршрута и передача по этому маршруту пакета или на другой маршрутизатор или непосредственно абоненту, если он напрямую подключен к данному узлу. Информация о маршруте передачи сообщения может быть использована для идентификации источника этого сообщения с точностью до подсети, т. е. от первого маршрутизатора. Задачу проверки подлинности адреса сообщения можно частично решить на уровне маршрутизатора. Сравнивая адреса отправителя, указанные в сообщении с адресом подсети, из которой получено сообщение, маршрутизатор выявляет те сообщения, у которых эти параметры не совпадают, и соответственно, отфильтровывает такие сообщения. Контроль за виртуальным соединением можно рассматривать как принцип построения защищенных систем, поскольку в этом случае определяются те правила, исходя из которых система могла бы либо поставить запрос в очередь, либо нет. Для предотвращения такой атаки как "отказ в обслуживании", вызванной "лавиной" направленных запросов на атакуемый узел целесообразно ввести ограничения на постановку в очередь запросов от одного объекта. Очевидно, что данная мера имеет смысл в тех случаях, когда надежно решена проблема идентификации объекта – отправителя запроса. В противном случае злоумышленник может отправлять запросы от чужого имени. Для повышения защищенности распределенных вычислительных сетей целесообразно проектировать их с полностью определенной информацией о ее объектах, что позволит устранить шестую из указанных причин успешной реализации удаленных угроз. Однако в вычислительных сетях с неопределенным и достаточно большим числом объектов (например, Интернет) спроектировать систему с отсутствием неопределенности практически невозможно, а отказаться от алгоритмов удаленного поиска не представляется возможным. Из существующих двух типов алгоритмов удаленного поиска (с использованием информационно-поискового сервера и с использованием широковещательных запросов) более безопасным является алгоритм удаленного поиска с использованием информационно-поискового сервера. Однако для большей безопасности связь объекта, формирующего запрос с сервером, необходимо осуществлять с подключением по виртуальному каналу. Кроме этого, объекты, подключенные к данному серверу, и сам сервер должны содержать заранее определенную статическую ключевую информацию, используемую при создании виртуального канала (например, закрытый криптографический ключ). 3.8.3. Выводы по темеПринципы построения защищенных вычислительных сетей по своей сути являются правилами построения защищенных систем, учитывающие, в том числе, действия субъектов вычислительной сети, направленные на обеспечение информационной безопасности. Существуют два возможных способа организации топологии распределенной вычислительной сети с выделенными каналами. В первом случае каждый объект связывается физическими линиями связи со всеми объектами системы. Во втором случае в системе может использоваться сетевой концентратор, через который осуществляется связь между объектами (топология "звезда"). Безопасная физическая топология сети (выделенный канал) является необходимым, но не достаточным условием устранения причин угроз информационной безопасности. Для повышения защищенности вычислительных сетей при установлении виртуального соединения необходимо использовать криптоалгоритмы с открытым ключом. Одной из разновидностей шифрования с открытым ключом является цифровая подпись сообщений, надежно идентифицирующая объект распределенной вычислительной сети и виртуальный канал. Задачу проверки подлинности адреса сообщения можно частично решить на уровне маршрутизатора. Для предотвращения типовой атаки "отказ в обслуживании", вызванной "лавиной" направленных запросов на атакуемый узел целесообразно ввести ограничения на постановку в очередь запросов от одного объекта. Для повышения защищенности распределенных вычислительных сетей целесообразно проектировать их с полностью определенной информацией о ее объектах. 3.8.4. Вопросы для самоконтроляВ чем заключаются преимущества сети с выделенными каналами? Какие алгоритмы удаленного поиска Вам известны? Какой из алгоритмов поиска более безопасный? Как повысить защищенность вычислительных сетей при установлении виртуального соединения? Как можно защитить сеть от реализации атаки "отказ в обслуживании"? Как можно контролировать маршрут сообщения в сети? 3.8.5. Ссылки на дополнительные материалы (печатные и электронные ресурсы)Основные: Медведовский И.Д., Семьянов П.В., Леонов Д.Г., Лукацкий А.В. Атака из Internet. – М.: Солон-Р, 2002. Галатенко В. А. Основы информационной безопасности. – М: Интернет-Университет Информационных Технологий – ИНТУИТ.РУ, 2003. Щербаков А. Ю. Введение в теорию и практику компьютерной безопасности. – М.: Издательство Молгачева С. В., 2001. В. Г. Олифер, Н. А. Олифер. Компьютерные сети. Принципы, технологии, протоколы. – СПб: Питер, 2000. www.jetinfo.ru. |