курсовая. ЭНГС_лекции. Курс лекций Томск 2002 Эксплуатация нефтяных и газовых скважин введение общая характеристика нефтяной залежи
Скачать 7.31 Mb.
|
3.7. Технология и техника использования глубинных вод для ППДИспользование вод глубинных водоносных пластов, залегающих выше или ниже нефтеносного пласта, для поддержания давления известно давно. Вначале такое использование сводилось к одновременному вскрытию водоносного и нефтеносного пластов одной скважиной. Если давление в водоносном пласте было больше, чем в нефтеносном пласте, происходил переток воды и вытеснение нефти в продуктивном горизонте. Воды глубинных пластов, как правило, очень чистые, без взвеси, с малым содержанием окислов железа, минерализованные, являются хорошим вытесняющим нефть агентом. На месторождениях с водоносными горизонтами, использование воды которых допустимо с точки зрения охраны природы и санитарно-гигиенических норм, эти горизонты могут быть идеальными источниками водоснабжения системы ППД. При использовании глубинных вод необходимо различать: 1. Системы с естественным перетоком воды из водоносного пласта в нефтеносный под воздействием естественной репрессии приведенных давлений без применения механических средств для принудительной закачки (дожимных насосов). 2. Системы с принудительным перетоком, в которых необходимая для закачки воды репрессия создается с помощью специальных погружных или поверхностных дожимных насосов. Обе системы в свою очередь могут подразделяться на системы с нижним перетоком, когда водоносный пласт залегает выше нефтеносного и системы с верхним перетоком, когда водоносный пласт залегает ниже нефтеносного. Рис. 3.6. Схема оборудования скважины при естественном внутренном перетоке: 1 - нефтяной пласт; 2 - камера для установки дебитомера (расходомера); 3 - разделительный пакер; 4 - водоносный пласт; 5 - перекрестная муфта Кроме того, использование глубинных вод может быть осуществлено по схеме с внутрискважинным перетоком, при которой вода глубинного водоносного горизонта закачивается в нефтяной пласт без выхода ее на поверхность и по схеме внескважинным перетоком, при котором вода глубинного водоносного горизонта подается (естественно или принудительно) на поверхность, а затем закачивается в соседние нагнетательные скважины или в ту же водозаборную скважину по второму каналу (рис. 3.6). В последнем случае происходит совмещение функций водозаборной и нагнетательной скважин. При нижнем перетоке (рис. 3.6, а) вода поступает из нижнего водоносного пласта по НКТ, проходит камеру, где устанавливается расходомер, спускаемый на кабеле (при дистанционной регистрации) или на стальной проволоке (при местной регистрации) с поверхности в НКТ. Пройдя расходомер, вода через отверстия в НКТ поступает в нефтяной пласт. При верхнем перетоке (рис. 3.6,6) вода поступает из верхнего водоносного пласта, проходит по каналам перекрестной муфты и попадает в НКТ. Выше перекрестной муфты расположена камера для расходомера, спускаемого с поверхности. Через отверстия в НКТ над камерой вода попадает в кольцевое пространство и далее в хвостовую часть НКТ и в пласт. При естественном перетоке пакер, герметизирующий кольцевое пространство между НКТ и обсадной колонной, вообще говоря, необязателен, так как давление жидкости над пакером и под ним почти одинаковое. (Разница обусловлена только потерями давления на трение.) Однако для направления всего потока воды через расходомер кольцевое пространство должно быть герметизировано, поэтому установка пакера, хотя бы самого простого, не рассчитанного на значительный перепад давления, необходима. При принудительном перетоке установка пакера для герметизации кольцевого пространства обязательна не только для того, чтобы направить весь поток жидкости через расходомер, а главным образом для того, чтобы обеспечить перепад давления, создаваемый дожимным насосом для принудительного перетока. Поэтому пакер, на который будет действовать перепад давления, создаваемый дожимным насосом, должен надежно герметизировать кольцевое пространство между НКТ и обсадной колонной. Кроме того, для предупреждения смещения пакера по обсадной колонне под действием страгивающей силы, обусловленной разностью давлений н достигающей 150 кН (в зависимости от давления), пакер закрепляют на обсадной колонне устройством, называемым якорем. При приведенных схемах оборудования можно измерять, но нельзя регулировать расход жидкости, что бывает нужно для управления процессом ППД. Для регулировки расхода возможна установка глубинных штуцеров - диафрагм, заранее оттарированных на поверхности, или установка иных устройств, изменяющих местное гидравлическое сопротивление и спускаемых с помощью, например, канатной техники. Использование устройств для естественного перетока может оказаться эффективным для заводнення истощенных нефтяных пластов, в которых пластовое давление достаточно мало. В этих случаях разница приведенных давлений на отметке нефтяного пласта может быть большой и достаточной для поглощения нужных объемов воды. В неистощенных пластах, поскольку давления, как правило, равны гидростатическим, необходимой для поглощения естественной репрессии получить нельзя, поэтому возникает необходимость в принудительном перетоке. В практике ППД на нефтяных промыслах Башкирии, Куйбышевской области и других районов нашли применение (хотя и очень ограниченное) различные конструкции для принудительного перетока. Большинство из них основано на использовании погружных центробежных электронасосов, предназначенных для эксплуатации нефтяных скважин. В некоторых схемах для принудительного перетока используются штанговые насосы, а также появившиеся недавно центробежные электронасосы, спускаемые в скважину не на НКТ, а на кабеле-канате. Кабель-канат одновременно выполняет роль кабеля, подводящего электроэнергию к электродвигателю, и роль каната, на котором вся установка опускается в скважину и извлекается на поверхность. Насос, спускаемый на кабеле-канате, фиксируется в скважине на пакере, предварительно установленном на требуемой глубине с помощью НКТ, которые затем извлекаются. Подаваемая насосом жидкость движется по обсадной колонне и омывает кабель-канат. В настоящее время промышленностью уже освоены установки, спускаемые на кабеле-канате (табл. 3.2). Таблица 3.2 Характеристика погружных установок, спускаемых на кабеле-канате
При нижнем перетоке (рис. 3.7, а) вода из нижнего пласта проходит через внутреннюю полость пакера 1, многоступенчатый центробежный насос 4 и выбрасывается в кольцевое пространство, омывая расположенный выше электродвигатель 2. Рис. 3.7. Схема оборудования скважины погружным центробежным электронасосом на кабеле-канате для принудительного перетока: а - переток из нижнего пласта в верхний; б - переток из верхнего пласта в нижний; 1 - разделительный пакер; 2 - электродвигатель (ПЭД); 3 - гидрозащита; 4 - центробежный насос; 5 - якорь; 6 - кабель-канат; 7 - приемная сетка насоса При верхнем перетоке вода проходит по кольцевому пространству, омывает двигатель (что необходимо для его охлаждения), попадает в приемную сетку 7 насоса 4 и далее выходит из насоса под высоким давлением через внутреннюю полость гидравлического якоря 5, удерживающего установку от смещения, и пакер 1, герметизирующий кольцевое пространство. Рабочие колеса на валу центробежного насоса в этом случае «переворачиваются» для нагнетания жидкости сверху вниз. В последнее время отечественной промышленностью созданы специальные высокопроизводительные погружные центробежные установки для ППД при использовании глубинных вод для условий Западной Сибири. Их краткая характеристика приведена в табл. 3.3. Эти насосы имеют соответствующее электрооборудование, т. е. станцию управления с необходимой автоматикой и трансформатор с регулируемым напряжением во вторичной обмотке для компенсации потерь напряжения в питающем кабеле. По сравнению с обычными они имеют увеличенные диаметры, поэтому могут быть спущены только в скважины с внутренним диаметром не менее 402 мм. Технические возможности этих насосов в сочетании с особенностями апт-альб-сеноманских водоносных горизонтов (обильные водопритоки, высокие уровни) в условиях нефтяных месторождений Тюменской области позволили по-новому решить вопросы техники ППД и, в частности, совместить водозаборную скважину с нагнетательной и подземной кустовой насосной станцией. Водозаборные скважины, пробуренные на апт-альб-сеноманские горизонты, являются фонтанирующими с незначительным статическим давлением на устье (0 - 0,5МПа). Эти скважины дают притоки в несколько тысяч кубических метров в сутки при очень малых депрессиях. Таблица 3.3 Характеристика погружных высокопроизводительных насосов для ППД
Воды этих скважин минерализованы, содержат растворенные газы углеводородного состава с большим содержанием азота. Газовые факторы достигают 1 - 3 м3/м3. Температура - 40 - 50 °С. Относительная плотность 1,05 - 1,1. При интенсивных отборах жидкости в воде может появиться песок. В этом случае необходим предварительный отстой воды перед закачкой в пласты. Широкое распространение этих водоносных комплексов позволило размещать водозаборные скважины непосредственно у нагнетательных и оборудовать их насосами УЭЦН-16-3000-1000 с большой подачей. Поскольку динамические уровни в водозаборных скважинах близки к поверхности, то давление, развиваемое этими насосами, достаточно для обеспечения требуемой приемистости нагнетательных скважин. Одна из возможных схем использования этих вод показана на рис. 3.8. Водозаоорная скважина специальной конструкции с увеличенным диаметром обсадной колонны в верхней части оборудуется центробежным насосом УЭЦН-16-3000-1000, спускаемым на НКТ, на малую глубину (50 - 150 м). Выкид насоса присоединяется к устью нескольких нагнетательных скважин, число которых Рис. 3.8. Схема подземной насосной станции для закачки пластовой воды в нагнетательные скажины: 1 - нагнетательные скважины; 2 - водоводы высокого давления; 3 - погружной электронасос водозаборной скважины; 4 - станция управления; 5 - трансформатор; 6 - водораспределительный и замерный узел зависит от подачи погружного насоса и поглотительной способности нагнетательных скважин. Объем нагнетаемой воды определяется с помощью счетчиков-расходомеров. Такая техника использования глубинных вод для ППД возможна при отсутствии песка в продукции водозаборных скважин. Однако при отборах из апт-альб-сеноманских водоносных горизонтов, превышающих 3000 м3/сут, в водозаборных скважинах непосредственно после пуска появляется песок в количествах, доходящих до 5 г/дм3 и более. В дальнейшем количество песка убывает и через 0,5 - 2 сут достигает следов или нескольких десятков миллиграммов на литр воды. При таких количествах песка центробежные насосы могут работать нормально, тем не менее присутствие песка в откачиваемой жидкости нежелательно, так как песок вызывает износ рабочих органов погружных центробежных насосов, сокращает межремонтный период работы установок, вызывает засорение призабойной зоны пласта нагнетательных скважин и снижение их поглотительной способности. Для предупреждения вредного влияния песка забои водозаборных скважин оборудуются соответствующими песочными фильтрами (щелевые, гравийные и др.) и на выкидных линиях насосов, на поверхности земли устанавливают отстойники высокого давления для улавливания песка, которые периодически промываются. В тех случаях, когда обильное количество песка и высокое давление не позволяют осуществить нормальный отстой песка, приходится идти на снижение давления воды перед отстоем в сосудах низкого давления и последующее повышение давления после отстоя дожимными насосами для закачки в нагнетательные скважины. Другим возможным решением проблемы использования глубинных вод может быть совмещение нагнетательной и водозаборной скважин. Часть воды, подаваемой насосом водозаборной скважины (подземной КНС), направляется в совмещенную нагнетательную скважину, а избыток (если он есть) направляется в соседние нагнетательные скважины (рис. 3.9). Рис. 3.9. Схема подземной кустовой насосной станции, питающая дополнительно две нагнетательные скважины, в которой водозаборная скважина совмещена с нагнетательной Под динамический уровень водозаборной скважины 1 опускается насос 2, который откачивает воду из водоносного пласта (ВП) и подает ее по НКТ малого диаметра 3 к замерному распределительному узлу 4 через отстойник высокого давления 5. Расход воды измеряется диафрагменными расходомерами 6. Часть воды по НКТ большого диаметра 7 и обводному каналу 8 поступает в хвостовую часть НКТ под насос и далее в нефтяной пласт (НП). Хвостовая часть НКТ уплотняется в обсадной колонне пакером 9. Таким образом, водоносный и нефтяной пласты разобщаются. Центробежный насос 2 приводится во вращение погружным электродвигателем 10, который связан электрокабелем со станцией управления и трансформатором II. Избыток воды подается в нагнетательные скважины 12. Глубина погружения насоса под динамический уровень определяется давлением, при котором начинается выделение из воды растворенного газа, и количеством этого газа. Для условий Западной Сибири глубина погружения составляет обычно 150 - 200 м. В тех случаях, когда дебит водозаборных скважин при фонтанном режиме их работы оказывается достаточно большой, насосная блочная станция третьего подъема (КНС) сооружается на поверхности, а устья одной или нескольких водозаборных скважин через герметизированный отстойник и сепаратор низкого давления соединяются непосредственно с приемным коллектором КНС. Отстойник и сепаратор устанавливаются для отделения взвеси и газа. В условиях сильной заболоченности территории промыслов Западной Сибири водозаборные скважины приходится бурить в виде куста, в котором одна из скважин вертикальная, а несколько других - наклонные. Забои таких наклонных водозаборных скважин удается разнести, на расстояние до 500 м от вертикали. Этим достигается снижение взаимного влияния скважин друг на друга и, следовательно, повышение их дебита. Описанные технические схемы водоснабжения системы ППД, как показал опыт их использования в условиях Западной Сибири, позволили: 1. Уменьшить металлоемкость системы ППД. 2. Сократить энергетические затраты, так как существенно сокращается общая длина водоводов. 3. Уменьшить более чем в 2 раза удельные капиталовложения на получение 1 м3 воды. 4. Уменьшить также более чем в 2 раза себестоимость 1 м3 добываемой воды. 5. Добиться высокой стабильности работы всей системы ППД и качества нагнетаемой воды вследствие отсутствия контакта воды с воздухом и сокращения времени контакта воды с железом в результате уменьшения длины водоводов. |