Главная страница
Навигация по странице:

  • Применяемые жидкости.

  • Жидкость разрыва

  • Жидкости-песконосители

  • Продавочные жидкости

  • курсовая. ЭНГС_лекции. Курс лекций Томск 2002 Эксплуатация нефтяных и газовых скважин введение общая характеристика нефтяной залежи


    Скачать 7.31 Mb.
    НазваниеКурс лекций Томск 2002 Эксплуатация нефтяных и газовых скважин введение общая характеристика нефтяной залежи
    Анкоркурсовая
    Дата28.02.2023
    Размер7.31 Mb.
    Формат файлаdoc
    Имя файлаЭНГС_лекции.doc
    ТипКурс лекций
    #960161
    страница31 из 97
    1   ...   27   28   29   30   31   32   33   34   ...   97

    5.7. Гидравлический разрыв пласта


    Сущность этого процесса заключается в нагнетании в проницаемый пласт жидкости при давлении, под действием которого пласт расщепляется, либо по плоскостям напластования, либо вдоль естественных трещин. Для предупреждения смыкания трещин при снятии давления в них вместе с жидкостью закачивается крупный песок, сохраняющий проницаемость этих трещин, в тысячи раз превышающую проницаемость ненарушенного пласта.

    Гидравлический разрыв проводится при давлениях, доходящих до 100 МПа, с большим расходом жидкости и при использовании сложной и многообразной техники.

    На пористый пласт в вертикальном направлении действует сила, равная весу вышележащих пород. Средняя плотность горных осадочных пород обычно принимается равной 2300 кг/м3 .

    Тогда давление горных пород будет равно

    , (5.1)

    Поскольку плотность воды 1000 кг/м3, то давление горных пород рг примерно в 2,3 раза больше гидростатического на той же глубине Н залегания пласта.

    Можно предполагать, что за многие миллионы лет существования осадочных пород внутреннее напряжение породы по всем направлениям стало одинаковым и равным горному. Исходя из этого, следует, что для расслоения пласта, т. е. для образования в пласте горизонтальной трещины, необходимо внутри пористого пространства создать давление Рр, превышающее горное на величину временного сопротивления горных пород на разрыв, так как надо преодолеть силы сцепления частиц породы, т. е.

    , (5.2)

    Однако фактические давления разрыва часто оказываются меньше горного, т. е. в ПЗС создаются области разгрузки, в которых внутреннее напряжение меньше горного рг, определяемого соотношением (5.1). Это может быть обусловлено причинами чисто геологического характера, например, в процессе горообразования могло произойти не только сжатие пород, но и их растяжение. Но существует и другое объяснение локального уменьшения Pг - сама проводка ствола скважины нарушает распределение напряжении в примыкающих породах, и эти нарушения (уменьшения) тем больше, чем ближе порода к стенкам скважины. Локальное уменьшение внутреннего напряжения особенно сильно, если в разрезе имеются слои глин, обладающие свойствами пластичности, которые в процессе бурения набухают и часто выпучиваются в ствол скважины, вынуждая буровиков перебуривать ее.

    В результате расщепление пласта, т. е. образование трещин, происходит при давлении меньшем, чем полное горное давление. Давление на забое скважины, при котором происходит гидравлический разрыв пласта (ГРП), называется давлением разрыва Pp. Оно не поддается надежному теоретическому определению, ибо связано с необходимостью знания некоторых параметров пласта, измерение которых недоступно. Существует также ряд других причин, затрудняющих аналитическое определение Pp.

    Гидроразрыв пласта осуществляется следующим образом. Поскольку при ГРП в большинстве случаев (за исключением мелких скважин) возникают давления, превышающие допустимые для обсадных колонн, то предварительно в скважину спус-

    кают НКТ, способные выдержать это давление. Выше кровли пласта или пропластка, в котором намечается произвести разрыв, устанавливают пакер, изолирующий кольцевое пространство и колонну от давления, и устройство, предупреждающее его смещение и называемое якорем. По спущенным НКТ нагнетается сначала жидкость разрыва в таких объемах, чтобы получить на забое давление, достаточное для разрыва пласта. Момент разрыва на поверхности отмечается как резкое увеличение расхода жидкости (поглотительной способности скважины) при том же давлении на устье скважины или как резкое уменьшение давления на устье при том же расходе. Более объективным показателем, характеризующим момент ГРП, является коэффициент поглотительной способности

    , (5.3)

    где Q - расход нагнетаемой жидкости; Рн - пластовое давление в районе данной скважины; Рс - давление на забое скважины в процессе ГРП. При ГРП происходит резкое увеличение kп. Однако вследствие трудностей, связанных с непрерывным контролем за величиной Рс, а также вследствие того, что распределение давлений в пласте - процесс существенно неустановившийся, о моменте ГРП судят по условному коэффициенту k.

    , (5.4)

    где Ру - давление на устье скважины. Резкое увеличение k в процессе закачки также интерпретируется как момент ГРП. Имеются приборы для снятия этой величины.

    После разрыва пласта в скважину закачивают жидкость-песконоситель при давлениях, удерживающих образовавшиеся в пласте трещины в раскрытом состоянии. Это более вязкая жидкость, смешанная (180 - 350 кг песка на 1 м3 жидкости) с песком или другим наполнителем. В раскрытые трещины вводится песок на возможно большую глубину для предотвращения смыкания трещин при последующем снятии давления и переводе скважины в эксплуатацию. Жидкости-песконосители проталкивают в НКТ и в пласт продавочной жидкостью, в качестве которой используется любая маловязкая недефицитная жидкость.

    Для проектирования процесса ГРП очень важно определить давление разрыва Pр, которое необходимо создать на забое скважины. Накоплен большой статистический материал по величине давления разрыва пласта Рр по различным месторождениям мира и при различных глубинах скважин, который говорит об отсутствии четкой связи между глубиной залегания пласта и давлением разрыва. Однако все фактические значения Pр лежат в пределах между величинами полного горного и гидростатического давлений. Причем при малых глубинах (менее 1000 м) рр ближе к горному давлению и при больших глубинах - к гидростатическому. На основании этих данных можно рекомендовать такие приближенные значения для давления разрыва:

    для неглубоких скважин (до 1000 м)



    для глубоких скважин (H > 1000 м)



    где Pcт - гидростатическое давление столба жидкости, высота которого равна глубине залегания пласта.

    Сопротивление горных пород на разрыв обычно мало и лежит в пределах σр = 1,5 - 3 МПа, поэтому оно не влияет существенно на Pp. Давление разрыва на забое Pр и давление на устье скважины Pу связаны очевидным соотношением

    , (5.5)

    где Pтр - потери давления на трение в НКТ. Из уравнения (5.5) следует

    , (5.6)

    Pст - статическое давление, определяется с учетом кривизны скважины

    , (5.7)

    где Н - глубина скважины; β - угол кривизны (усредненный); ρж - плотность жидкости в скважине, причем если жидкость содержит наполнитель (песок, стеклянные шарики, порошок из полимеров и др.), то плотность подсчитывается как средневзвешенная

    , (5.8)

    где n - число килограммов наполнителя в 1 м3 жидкости; ρн - плотность наполнителя (для песка ρн = 2650 кг/м3). Потери на трение определить труднее, так как применяемые жидкости иногда обладают неньютоновскими свойствами. Присутствие в жидкости наполнителя (песка) увеличивает потери на трение. В американской практике используются различные графики зависимости потерь давления на трение на каждые 100 фут НКТ разного диаметра при прокачке различных жидкостей с заданным объемным расходом.

    При больших темпах закачки, соответствующих турбулентному течению, структурные свойства используемых жидкостей (с различными загустителями и химическими реагентами) обычно исчезают, и достаточно приближенно потери на трение для этих жидкостей можно определить по обычным формулам трубной гидравлики.

    , (5.9)

    где λ - коэффициент трения, определяемый по соответствующим формулам в зависимости от числа Рейнольдса; w - линейная скорость потока в НКТ; d - внутренний диаметр НКТ; ρ - плотность жидкости, см. (5.8); Н - длина НКТ; g = 9,81 м/с2; α - поправочный коэффициент, учитывающий наличие в жидкости наполнителя (для чистой жидкости α = 1) и зависящий от его концентрации (рис. 5.3).



    Рис. 5.3. График зависимости поправочного коэффициента для определения

    потерь давления на трение от концентрации песка для жидкостей разной плотности:

    1 - Qж = 800 кг/м3; 2 - 850 кг/м3; 3 - 900 кг/м3; 4 - 950 кг/м3; 5 - 1000 кг/м3 .
    Применяемые жидкости. Применяемые для ГРП жидкости приготавливаются либо на нефтяной, либо на водной основе. Сначала использовались вязкие жидкости на нефтяной основе для уменьшения поглощения жидкости пластом и улучшения песконесущих свойств этих жидкостей. С развитием и усовершенствованием технических средств для ГРП, увеличением подачи насосных агрегатов удается обеспечить необходимые расходы и песконесущую способность при маловязких жидкостях на водной основе. Переход на жидкости на водной основе привел к тому, что гидростатические давления за счет увеличения плотности этих жидкостей возросли, а потери на трение в НКТ уменьшились. Это в свою очередь уменьшило необходимые для ГРП давления на устье. По своему назначению жидкости разделяются на три категории: жидкость разрыва, жидкость-песконоситель и продавочная жидкость.

    Жидкость разрыва должна хорошо проникать в пласт или в естественную трещину, но в то же время иметь высокую вязкость, так как в противном случае она будет рассеиваться в объеме пласта, не вызывая необходимого расклинивающего действия в образовавшейся трещине. В качестве жидкостей разрыва используют сырые дегазированные нефти с вязкостью до 0,3 Па-с; нефти, загущенные мазутными остатками; нефтекислотные эмульсии (гидрофобные); водонефтяные эмульсии (гидрофильные) и кислотно-керосиновые эмульсии.

    Эмульсии приготавливаются путем механического перемешивания компонентов центробежными или шестеренчатыми насосами с введением необходимых химических реагентов. Как правило, жидкости на углеводородной основе применяют при ГРП в добывающих скважинах.

    В нагнетательных скважинах в качестве жидкости разрыва используют чистую или загущенную воду. К загустителям относятся компоненты, имеющие крахмальную основу, полиакриламид, сульфит-спиртовая барда (ССБ), КМЦ (карбоксилметилцеллюлоза).

    При использовании жидкости на водной основе необходимо учитывать ее взаимодействие с породой пласта, так как некоторые глинистые компоненты пластов чувствительны к воде и склонны к набуханию. В таких случаях в жидкости на водной основе вводят химические реагенты, стабилизирующие глины при смачивании. Обычно рецептура жидкостей составляется и исследуется в промысловых лабораториях и НИИ.

    Жидкости-песконосители также изотавливают на нефтяной и водной основах. Для них важна пескоудерживающая способность и низкая фильтруемость. Это достигается как увеличением вязкости, так и приданием жидкости структурных свойств. В качестве жидкостей-песконосителей используются те же жидкости, что и для разрыва пласта. Для оценки фильтруемости используется стандартный прибор ВМ-6 для определения водоотдачи глинистых растворов.

    При высокой фильтруемости перенос песка в трещине жидкостью ухудшается, так как довольно быстро скорость течения ее по трещине становится равной нулю, и развитие ГРП затухает в непосредственной близости от стенок скважины. Хорошей песконесущей способностью обладают эмульсии, особенно кислотно-керосиновые, обладающие высокой стойкостью, не разрушающиеся в жаркую погоду и выдерживающие длительную транспортировку с наполнителем. Известные трудности возникают при закачке песконосительной жидкости, так как из-за большой вязкости, наличия в ней наполнителя - песка и необходимости вести закачку на большой скорости возникают большие устьевые давления. Кроме того, насосные агрегаты хотя и делаются в износостойком исполнении, при работе на высоких давлениях быстро изнашиваются. Для снижения потерь давления на трение на 12 - 15 % разработаны химические добавки к растворам на мыльной основе, которые хотя несколько увеличивают вязкость, но уменьшают трение при движении жидкости по НКТ. Другим типом таких добавок являются тяжелые высокомолекулярные углеводородные полимеры. Заметим, что недостаточная песконесущая способность жидкости может быть всегда компенсирована увеличением ее расхода. В качестве жидкости-песконосителя как в нагнетательных, так иногда и в добывающих скважинах используется чистая вода. Дешевизна воды, повсеместное ее наличие, присущие ей свойства хорошего растворителя при введении различных облагораживающих добавок привели к тому, что в настоящее время около 90 % операций ГРП осуществляются с использованием жидкостей на водной основе.

    Продавочные жидкости закачивают в скважину только для того, чтобы довести жидкость-песконоситель до забоя скважины. Таким образом, объем продавочной жидкости равен объему НКТ, через которые ведется закачка жидкости-песконосителя. К расчетному объему НКТ прибавляется объем затрубного пространства между башмаком НКТ и верхними дырами фильтра. В качестве продавочной жидкости используется практически любая недорогая жидкость, имеющаяся в достаточном количестве, и чаще всего обычная вода.

    Наполнитель служит для заполнения образовавшихся трещин и предупреждения их смыкания при снятии давления. Известны факты эффективного ГРП без применения напол-нителя. Однако в этих случаях эффект менее продолжителен. Наполнитель при заполнении трещины воспринимает нагрузку от горного давления после снижения давления жидкости. В результате он частично разрушается, а частично вдавливается в породу стенок трещин. Поэтому он должен обладать высокой прочностью на смятие. В идеале наполнитель должен иметь плотность, равную плотности жидкости-песконосителя. В этом случае перенос его по трещине и ее заполнение были бы наиболее успешными. Размеры зерен наполнителя должны обеспечить его проникновение в самые удаленные части трещины и высокую их проницаемость при последующей эксплуатации скважин. Для ГРП применяют песок размером от 0,5 до 1,2мм. Обычно в первые порции жидкости-песконосителя замешивается более мелкая фракция (0,5 - 0,8 мм), а в последующую часть расчетного объема - более крупные фракции.

    В качестве наполнителя наиболее часто используется чистый кварцевый песок. Однако песок имеет очень большую плотность (2650 кг/м3), которая сильно отличается от плотности жидкости, что способствует его оседанию из потока жидкости и затрудняет заполнение трещин. Кроме того, его плотность на смятие в ряде случаев бывает недостаточной. В связи с этим в мировой практике в последнее время находят применение в качестве наполнителя стеклянные шарики, а также зерна агломерированного боксита соответствующего размера и молотая скорлупа грецкого ореха. Плотность стеклянных шариков примерно равна плотности кварца, т. е. 2650 кг/м3, но они прочнее и меньше вдавливаются в породу. Плотность порошка агломерированного боксита 1400 кг/м3 Производятся промышленные испытания наполнителя из особо прочных искусственных синтетических полимерных веществ, имеющих плотность, близкую к плотности жидкости (1100 кг/м3) песконосителя.

    В настоящее время современная техника и применяемые жидкости позволяют осуществлять успешную закачку при средней концентрации песка порядка 200 кг/м3 жидкости. Однако применяются как большие, так и меньшие концентрации. Количество закачиваемого песка, расходуемого на одну операцию ГРП, по данным фирмы Халибартон, к настоящему времени доведено в среднем до 22,5 т, а количество закачанной жидкости в среднем (жидкость разрыва + жидкость-песконоситель) до 151,4 м3 .
    1   ...   27   28   29   30   31   32   33   34   ...   97


    написать администратору сайта