Курсовая на тему имитационное моделирование. Курсовая работа Имитационное моделирование Нерюнгри, 2012 Содержание Введение. Имитационное моделирование
Скачать 5.52 Mb.
|
Виды имитационного моделирования:· Агентное моделирование - относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей - получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент - некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться. · Дискретно-событийное моделирование - подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: "ожидание", "обработка заказа", "движение с грузом", "разгрузка" и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах. · Системная динамика - парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах. 2. Моделирование рисков инвестиционных проектов Имитационное моделирование представляет собой серию численных экспериментов призванных получить эмпирические оценки степени влияния различных факторов (исходных величин) на некоторые зависящие от них результаты (показатели). В общем случае, проведение имитационного эксперимента можно разбить на следующие этапы: · Установка взаимосвязи между исходными и выходными показателями в виде математического уравнения или неравенства. · Задание законов распределения вероятностей для ключевых параметров модели. · Проведение компьютерной имитации значений ключевых параметров модели. · Расчет основных характеристик распределения исходных и выходных показателей. · Анализ полученных результатов и принятие решения. Результаты имитационного эксперимента могут быть дополнены статистическим анализом, а также использоваться для построения прогнозных моделей и сценариев. Осуществим имитационное моделирование анализа рисков инвестиционного проекта на основании данных примера. Пример 1. Фирма рассматривает инвестиционный проект по производству продукта "А". В процессе предварительного анализа экспертами были выявлены три ключевых параметра проекта и определены возможные границы их изменений (табл. 1.). Прочие параметры проекта считаются постоянными величинами (табл. 2.). Таблица 1. Ключевые параметры проекта по производству продукта "А"
Таблица 2. Неизменяемые параметры проекта по производству продукта "А"
Первым этапом анализа согласно сформулированному выше алгоритму является определение зависимости результирующего показателя от исходных. При этом в качестве результирующего показателя обычно выступает один из критериев эффективности: NPV, IRR, PI. Предположим, что используемым критерием является чистая современная стоимость проекта NPV: где NCFt - величина чистого потока платежей в периоде t. По условиям примера, значения нормы дисконта r и первоначального объема инвестиций I0 известны и считаются постоянными в течении срока реализации проекта (табл. 2). По условиям примера ключевыми варьируемыми параметрами являются: переменные расходы V, объем выпуска Q и цена P. Диапазоны возможных изменений варьируемых показателей приведены в табл. 1. При этом будем исходить из предположения, что все ключевые переменные имеют равномерное распределение вероятностей. Реализация третьего этапа может быть осуществлена только с применением ЭВМ, оснащенной специальными программными средствами. Поэтому прежде чем приступить к третьему этапу - имитационному эксперименту, познакомимся с соответствующими средствами MS Excel, автоматизирующими его проведение. |