Главная страница
Навигация по странице:

  • Сплавы Fe—Ni инварного состава.

  • Сплавы с минимальным тепловым расширением.

  • Выбор материалов и способов их упрочнения». Курсовая работа по дисциплине Выбор материалов и способов их упрочнения


    Скачать 0.67 Mb.
    НазваниеКурсовая работа по дисциплине Выбор материалов и способов их упрочнения
    АнкорВыбор материалов и способов их упрочнения
    Дата30.01.2022
    Размер0.67 Mb.
    Формат файлаdocx
    Имя файлаВыбор материалов и способов их упрочнения».docx
    ТипКурсовая
    #346651
    страница2 из 3
    1   2   3

    Общие сведения

    прецизионный сплав упругий термомеханический

    Для ряда отраслей машиностроения и приборостроения необходимо применение материалов со строго регламентированными значениями в определенных температурных интервалах эксплуатации таких физических свойств, как температурные коэффициенты линейного расширения α (ТКЛР) и модуля нормальной упругости β (ТКМУ). Эти коэффициенты определяют характер изменения размеров детали и модуля упругости сплава при нагреве.

    ТКЛР сплава определяют с помощью дилатометра по относительному удлинению образца в заданном температурном диапазоне.

    Согласно правилу Курнакова, в том случае, если компоненты образуют твердый раствор, то ТКЛР сплава изменяется по криволинейной зависимости внутри пределов, ограниченных значениями ТКЛР этих чистых компонентов. Коэффициент линейного расширения α возрастает с повышением температуры (рис. 1). Однако сплавы Fe—Ni не подчиняются общим закономерностям. В области концентраций от 30 до 45 % для них характерны аномалии, связанные с инварным эффектом. Самое низкое значение ТКЛР в диапазоне температур от –100 до 100 °С имеет сплав, содержащий 36 % Ni. Этот сплав был открыт Гийомом в 1897 году и назван инваром (лат. неизменный) из-за минимальных значений теплового расширения.

    Для металлов с кубической кристаллической решеткой ТКЛР изотропен. Его значения не зависят от направлений кристаллической решетки и преимущественной ориентации текстуры. Термический коэффициент объемного расширения втрое превышает ТКЛР.


    1. Сплавы Fe—Ni инварного состава.

    Помимо низких значений ТКЛР характерна еще одна аномалия — аномалия термического коэффициента модуля упругости ТКМУ. В любых твердых телах, в том числе металлах, при нагреве наблюдается уменьшение модуля упругости, являющегося мерой сил межатомных связей. В сплавах с инварным эффектом модуль упругости растет или остается постоянным с повышением температуры. Характерно, что максимальной величиной ТКМУ обладает тот же сплав Fe—Ni с самым низким значением ТКЛР, содержащий 36 % Ni. Подбор определенного химического состава позволяет разработать сплавы, модуль упругости которых практически не зависит от температуры. Сплавы, сохраняющие постоянство модуля упругости в широком температурном диапазоне, называют элинварами. Природа аномального изменения ТКЛР инварных сплавов, так же как и модуля нормальной упругости, имеет ферромагнитное происхождение.

    В ферромагнитных сплавах Fe—Ni инварного типа велик уровень объемной магнитострикции — изменения объема за счет внутреннего магнитного поля. При нагреве происходит уменьшение магнитострикционной составляющей объема.

    Выше температуры точки Кюри магнитострикционные деформации полностью исчезают в связи с переходом металла в парамагнитное состояние.

    ТКЛР ферромагнетиков определяется формулой: α = α0 – Δ, где α0 — нормальный коэффициент линейного расширения, определяемый энергией связи атомов; Δ — составляющая ТКЛР, обусловленная магнитострикцией парапроцесса.

    Нормальная составляющая ТКЛР при нагреве растет вследствие уменьшения энергии связи атомов. Этот рост компенсируется уменьшением магнитострикции в результате снижения намагниченности, как следствие усиления тепловых колебаний атомов. В итоге при нагреве до температуры точки Кюри объем инварных сплавов мало меняется. ТКЛР для некоторых сплавов может даже приобретать отрицательные значения, и их объем даже уменьшается.


    Рис. 1 Кривая расширения сплавов при повышении температуры


    Рис. 2 Температурный коэффициент линейного расширения сплавов Fe—Ni


    Внешние растягивающие напряжения действуют на Fe—Ni-ферромагнетики инварного состава подобно магнитному полю и также способствуют проявлению объемной магнитострикции, обычно называемую в этом случае механострикцией. Высокий уровень механострикции в элинварных сплавах способствует аномальному изменению модуля упругости при нагреве. Влияние нагрева на модуль упругости элинварных сплавов может быть описано формулой Еt = Е0 (1 + βt), где Е0 — модуль упругости обычных сплавов, β — температурный коэффициент модуля нормальной упругости. В элинварных сплавах этот коэффициент всегда имеет положительное значение.

    Снижение модуля упругости при нагреве обычных сплавов компенсируется составляющей за счет механострикции, что в итоге способствует стабилизации модуля упругости в широком температурном диапазоне.

    Для обеспечения стабильности температурного коэффициента линейного расширения и модуля упругости для каждого конкретного случая необходимо применение сплавов строго определенного химического состава.

    Такие сплавы обычно называют прецизионными сплавами (от фр. precision), т. е. отличающимися высокой точностью химического состава.

    Прецизионные сплавы с высокими упругими свойствами используются в приборостроении для изготовления упругочувствительных элементов различной измерительной аппаратуры. Эти сплавы подразделяют на ферромагнитные, с температурно-стабильным модулем упругости и немагнитные.

    К ферромагнитным сплавам на железоникелевой основе принадлежит элинвар, обладающий малым температурным коэффициентом упругих модулей, а к немагнитным - дисперсионно-твердеющий сплав 47ХНМ, обладающий, помимо высоких упругих свойств, коррозионной стойкостью. Сплав имеет высокую пластичность при повышенных температурах, поэтому поддается ковке и прокатке.


    Рис. 3 Температурный коэффициент модуля упругости сплавов Fe

    Для метрологии, геодезии и точного приборостроения важны сплавы с низким температурным коэффициентом линейного расширения a. В сочетании с высокой пластичностью они пригодны для спайки со стеклом и керамикой.

    В приборах высокой точности необходимо сочетание большей упругости c малыми a. В зависимости от значений a ферромагнитные материалы делят на три группы: с минимальными a (£ 3,5.10-6 1/°С); с низкими a ((4…6,5) .10-6 1/°С); со средними a ((7…12) .10-6 1/°С).

    Сплавы с минимальными a используют в измерительной технике, а сплавы двух других групп - в основном для изготовления деталей приборов, имеющих спаи со стеклом, керамикой и другими материалами.

    Большинство сплавов с заданным a однофазны во избежание объемных изменений при изготовлении и эксплуатации изделий. Широко используется инвар (36 % Ni, остальное Fe) и более сложные сплавы на его основе, а также железохромистый сплав Х18ТФ.

    Особенностью этих ферромагнитных сплавов с заданным a является аномалия теплового расширения. Заключается она в том, что у сплава с 36 % Ni температурный коэффициент линейного расширения примерно на порядок ниже, чем у входящих в него чистых компонентов железа и никеля; а у сплава с 25 % Ni - он, наоборот, почти в два раза выше. Это различие наблюдается лишь для ферромагнитного состояния сплавов. При переходе в парамагнитное состояние температурный коэффициент линейного расширения значительно возрастает. Значения в ферромагнитном состоянии сплавов тем ниже, чем уже температурный интервал, в котором проявляется аномалия расширения. Увеличение температурного интервала, в котором железоникелевые сплавы сохраняют низкие значения a, достигается их легированием кобальтом и медью, сужение - легированием хромом.


    Рис. 4 Зависимость температурного коэффициента линейного расширения сплавов системы Fe - Ni от состава


    2.Сплавы с минимальным тепловым расширением.
    К сплавам с минимальным тепловым расширением относятся 36Н, 39Н, а также 32НКД и 35НКТ. Для снижения величины a сплавы закаливают с 830…870 °С в воду, отпускают при 315 °С в течение часа и затем

    48 ч. подвергают старению при 95 °С. При этом a = 1,7 .10-6 1/°С. Еще более низкие значения та получаются в результате отжига сплавов после холодной деформации на 60% (a = 0,3 .10-6 1/°С)

    Сплав 36Н используют в точном машиностроении в интервале температур от 100 до - 269 °С. В интервале от 100 до - 60 °С также широко применяют железоникелькобальтовый сплав 32НКД и суперинвар.

    Для деталей повышенной прочности и твердости и одновременно с заданным a используют дисперсионно-твердеющий сплав 35НКТ (35 % Ni; 5…6 % Сr; 2,2…2,8% Тi; не более 0,05 % С; 0,5% Со; ост. Fe). Для этого сплава в интервале температур от - 60 до + 60 °С a = 0,3 .10-6 1/°С.

    Величина a сплавов и спаиваемых с ними неорганических веществ должны быть близки, а сами материалы не должны претерпевать фазовых превращений. Для этих целей используют сплавы 30НКД (29,5…30,5 % Ni; 13…14,2 % Со; 0,05% С; 0,3…0,5 % Сu; ост. Fe) и 29НК (28,8 % Ni; 17,8 % Со; 0,02 % С; ост. Fe).

    Сплавы со средними величинами a - это 47ХНР (46…48 % Ni; 4,5…6,0 % Сr; ост. Fе) и 47НД (47,4 % Ni; 5,1 % Сu; ост. Fе).

    Немагнитные сплавы с заданными температурными коэффициентами линейного расширения характеризуются средними значениями a и низкой магнитной восприимчивостью. К числу этих сплавов относят 75НМ (никельмолибденовый), 80НМВ и 70НВД (никельмолибденвольфрамовый и никельвольфрамовый, легированный медью до 1…2 %)

    Эффект памяти формы (ЭПФ) в металлах, открытие которого по праву рассматривается как одно из самых значительных достижений материаловедения, в настоящее время интенсивно исследуется и ряде случаев успешно применяется в технике.

    Научный интерес к этому явлению определяется стремлением познать физическую природу и механизм ЭПФ, что расширяет фундаментальные представления о неупругом поведении твердых тел. С практической точки зрения эти исследования стимулируются тем, что ЭПФ в металлах уже сейчас открывает широкие перспективы применения в технике, позволяя создавать элементы и устройства с принципиально новыми функциональными свойствами.

    До недавнего времени неупругую деформацию рассматривали как пластическую и считали ее необратимой. Пластическая деформация кристаллов происходит за счет движения дефектов кристаллической решетки — элементарных носителей деформации, в качестве которых выступают точечные дефекты и (или) дислокации. Важно подчеркнуть, что в общем случае расположение дислокаций и (или) точечных дефектов в новые последеформационные позиции после снятия нагрузки могут оказаться стабильными, т. е. не предпочтительнее исходных. Следствием этого является практически полная необратимость неупругой деформации. Наблюдающееся на практике механическое последействие, связанное с некоторым обратным перемещением дефектов после разгрузки, не превышает 10–4–10–3 относительной деформации и им можно пренебречь.

    Наряду с вышеуказанными механизмами пластическая деформация может быть вызвана механическим двойникованием кристалла.

    Исследованиями последних десятилетий установлено, что существует обширный класс материалов (сплавы на основе никелида титана TiNi, латуни и бронзы сложного состава и др.), у которых элементарный акт пластичности осуществляется за счет обратимого мартенситного превращения, упругого двойникования и ряда других процессов, коренным образом изменяющих закономерности неупругого деформирования. У этих сплавов, в частности, может наблюдаться полная или частичная обратимость неупругой деформации, называемая эффектом памяти формы.

    В основе ЭПФ большинства сплавов лежат так называемые термоупругие мартенситные превращения (ТУМП). Теория мартенситных превращений основывается на фундаментальных представлениях о закономерном характере перестройки кристаллической решетки и когерентности сосуществующих фаз аустенита (А) и мартенсита (М), сформулированных Г.В. Курдюмовым (высокотемпературную фазу принято называть аустенитом, а низкотемпературную — мартенситом).

    Для сплавов с ТУМП характерна зависимость фазового состава от температуры, представленная на рис. 5.1.

    При охлаждении материала из аустенитного состояния мартенсит начинает образовываться с некоторой температуры Мн. При дальнейшем охлаждении количество мартенситной фазы увеличивается, и полное превращение аустенита в мартенсит заканчивается при некоторой температуре Мк. Ниже этой температуры термодинамически устойчивой остается только мартенситная фаза. При нагреве превращение мартенсита в аустенит начинается с некоторой температуры Ан и полностью заканчивается при температуре Ак. При полном термоциклировании получается гистерезисная петля. Ширина гистерезисной петли по температурной шкале Ак–Мн или Ан–Мк может быть различной для разных материалов: широкой или узкой (рис. 6, а и б). При наличии механических напряжений температуры Мн, Мк,, Ан и Ак могут смещаться в сторону более высоких температур, и в этом случае их обозначают как , , и .
    Важно отметить, что при ТУМП (в отличие от обычных мартенситных превращений, например в сталях) межфазные границы между А и М сохраняют когерентность и являются легко подвижными. При охлаждении (прямое превращение) в интервале температур (Мн–Мк) зарождаются и растут кристаллы мартенсита, а при нагреве (обратное превращение) в интервале температур (Ан–Ак) кристаллы мартенсита исчезают (превращаются в аустенит) в обратной последовательности.




    Рис. 5 Рост и исчезновение кристаллов мартенсита при охлаждении и нагреве (сплав Cu—Al—Mn)
    Для изотропного материала при отсутствии внешних напряжений мартенситные пластины, образующиеся при прямом превращении, не имеют преимущественной ориентировки, и локальные сдвиговые деформации в среднем по объему компенсируются. В процессе обратного превращения (М ® А) перестройка решетки в исходную протекает строго в обратной последовательности. При этом не наблюдается макроскопического изменения формы материала, за исключением небольшого изменения объема (например, для сплава на основе TiNi изменение объема составляет около 0,34 %, что на порядок меньше, чем для сталей (» 4 %)).
    В случае наличия в материале ориентированных напряжений (например, действие внешней нагрузки) мартенситные пластины приобретают преимущественную ориентировку, и локальные сдвиговые деформации приводят к макроскопическому изменению формы образца (принцип Ле Шателье-Брауна). В процессе обратного превращения (М и А) перестройка решетки происходит по принципу «точно назад», при этом локальные сдвиговые деформации исчезают и, следовательно, устраняется макроскопическое изменение формы. Внешнее проявление такого поведения материала интерпретируется как ЭПФ.

    Для полного восстановления формы необходимо, чтобы мартенситное превращение являлось кристаллографически обратимым. Кристаллографическая обратимость превращения предполагает не только восстановление кристаллической структуры, зависящей от обратного превращения, но и восстановление кристаллографической ориентировки исходной фазы перед превращением. Кроме того, необходимо, чтобы деформация осуществлялась без участия скольжения, так как скольжение является необратимым процессом, и при нагреве деформация не устраняется.

    Мартенситное превращение может инициироваться не только изменением температуры, но и порождаться механическими усилиями. В соответствии со сказанным, различают термомартенсит и механомартенсит, и при анализе фазовых диаграмм (рис. 5.1) вводят обычно еще три характеристических температуры: Т0, Мд, Ад, где Т0 — температура термодинамического равновесия; Мд — температура, ниже которой мартенсит может возникнуть не только вследствие понижения температуры, но и под действием механического напряжения; Ад — температура, выше которой аустенит может появиться не только вследствие нагревания, но и под действием механических напряжений.

    Расположение этих температур относительно петли гистерезиса оказывает влияние на поведение материала при термосиловом воздействии. В случае узкого гистерезиса (рис. 6, б) температура Мд может оказаться правее температуры конца аустенитного превращения Ак, а при широком гистерезисе — левее этой температуры (рис. 6, а).

    В сплавах с узким гистерезисом наведенный механомартенсит, т. е. мартенсит, образованный под действием внешней нагрузки при температуре ниже Мд (но выше Ак), будет термодинамически неустойчивым и при разгрузке он должен исчезнуть. На рис. 5. превращения аустенит—мартенсит условно обозначены вертикальными стрелками. В таких материалах наблюдается так называемый эффект псевдоупругости, очевидно связанный с этими явлениями.

    При широком гистерезисе наведенный механомартенсит будет термодинамически устойчивым и сохраняется при разгрузке. Деформации в этом случае исчезнут только после нагрева, т. е. после завершения реакции.


    Рис. 6 Зависимость фазового состава сплава от температуры: а) широкий гистерезис; б) узкий гистерезис

    3
    1   2   3


    написать администратору сайта