Главная страница

цуыыы. Курсовая работа по курсу Разработка нефтяных и газовых месторождений


Скачать 6.38 Mb.
НазваниеКурсовая работа по курсу Разработка нефтяных и газовых месторождений
Анкорцуыыы
Дата06.12.2022
Размер6.38 Mb.
Формат файлаdoc
Имя файла31701.doc
ТипКурсовая
#831112
страница5 из 5
1   2   3   4   5

Расчетная часть



Расчет производим по ТПВ-участку скважины №1413.

Объем закачки горячей воды для VT (для проталкивания оторочки полимера) и раствора поли­мера VП определяется из соотношения:
(1)
где Vt объем горячей воды, м3; VП — объем оторочки раствора полимера, м3; т — пористость пласта; Сск —удельная теплоемкость минерального скелета пласта, кДж/кг °С; SH — остаточная нефтенасыщенность; Сн — удельная теплоемкость нефти, кДж/кг °С; Сж — удельная теплоемкость теплоносителя, кДж/кг °С; рск — плотность минерального скелета пласта, кг/м3; рн — плотность нефти, кг/м3; ржплотность теплоносителя, кг/м3;  — отношение радиуса фронта концентрации раствора полимера к радиусу фронта возмущенной температуры в пласте;  = 1 ,1-5-1,9; Г — коэффициент Генри адсорбции полимера, м33.

Температурный расчет для нахождения температуры раствора полимера в пластовых условиях из формулы ( 2 ):




где П — коэффициент теплопотерь через кровлю и подошву пласта; ТП° — температура закачиваемого раствора полимера на забое нагнетательной скважины, °С; ТТ— температура теплоносителя на забое скважины, °С; То — начальная невозмущенная температура пласта, °С; ТПтемпература раствора полимера в пластовых условиях, °С; С°П — удельная теплоемкость раствора полимера, кДж/кг°С; р°П — плотность раствора полимера, кг/м3;  — коэффициент, учитывающий цикличность закачки теплоносителя и раствора полимера (выбирается в зависимости от продолжительности закачки оторочек теплоносителя и раствора полимера

( =1 — 2 ).

Данные для расчетов взяты из таблиц 11 и 12, а также из справочников:

m=0.16; Cck=8.32; ck=2.5*103; SH=0.14; CH=2.5; H=910; Cж=4.18; ж=1000;

Г=0.87; =1.5;

Т0=32; Тт=85; С0П=0.102; 0П=1200; Т0П=80; VП=334.9*103.

Подставив данные в формулу ( 1 ) найдем:

VT/VП = 0.91, отсюда получим, что VT=304.759*103 м3 горячей воды, т. е. это объем, необходимый для закачки в пласт с целью проталкивания оторочки полимера.

Рассчитаем длительность периода закачки VT=304.759*103 м3 воды с учетом, что запроектированный ежесуточный ее расход составляет 50 – 75м3/сут (62.5 м3/сут):

VT/62.5 = 4876.144 суток = 13.36 года

непрерывного технологического процесса.

По формуле ( 2 ) после соответствующих расчетов получим:

ТП=68.040С – температура раствора полимера в пластовых условиях, эта температура соответствует технологическому условию процесса ТПВ, т. е. температура раствора на забое действительно превышает начальную пластовую температуру (То=320С) не менее чем на 20 - 300С, а именно на 36.040С.

ЗАКЛЮЧЕНИЕ.
На основе анализа разработки Мишкинского нефтяного месторождения и научных исследований создан и внедрен принципиально новый высокоэффективный комбинированный метод термополимерного воздействия на залежи высоковязкой нефти с трещиновато-поровым коллектором.

Изученный механизм ТПВ показал, что горячий раствор полимера, проникающий, прежде всего, по трещинам, увеличивает свою вязкость примерно на порядок по сравнению с горячей водой. Таким образом, гидравлические сопротивления на фронте вытеснения для полимерного раствора оказываются значительно большими, чем для горячей воды, что приводит к увеличению коэффициента охвата. Результаты теоретических и экспериментальных исследований показывают, что прирост конечного нефтеизвлечения при ТПВ по сравнению с воздействием необработанной водой (для указанных геолого-физических условий) составит 15—20%.

Успешность ТПВ во многом зависит от качества приготовления полимерного раствора. Для этого необходимо соблюдать следующие требования:

  1. раствор полимера, поступающий в пласт, не должен содержать твердых или гелеобразных частиц;

  2. полимерный раствор не должен подвергаться при закачке механической деструкции. С этой целью предпочтительно использовать поршневые насосы вместо центробежных;

  3. потери тепла при прохождении полимерного раствора от печи до забоя скважины должны быть минимальными.

Текущая нефтеотдача на участке ТПВ превысила утвержденную ГКЗ СССР (39%) и составляет 40,9% от начальных балансовых запасов и 104,3% от начальных извлекаемых запасов. Фактические результаты разработки залежи показывают, что принятый ГКЗ коэффициент нефтеотдачи 39%. (при заводнении) оказался явно завышенным. Накопленная добыча нефти на участке ТПВ составила 511,2 тыс. т, что превышает расчетную на 19,7 тыс. т. Эта нефть считается дополнительно добытой, т. к. она составляет прибавку к оценкам базового варианта при проектировании.

Наряду с уже перечисленными преимуществами способа ТПВ следует подчеркнуть ограничение общего количества рабочего агента, поскольку создание необходимого гидродинамического и «теплового охвата» не требует таких больших количеств закачиваемого агента или теплоносителя, как в случае воздействия на пласт горячей водой. Общий объем рабочего агента для удовлетворительного воздействия в 1,5 раза меньше, чем при других технологиях. Кроме того, при ТПВ наблюдается повышение приемистости нагнетательных скважин. Промышленная разработка месторождений с карбонатными коллекторами показывает, что, как правило, при использовании воды или холодных полимерных растворов не достигаются хорошие профили приемистости нагнетательных скважин. Снятие профилей приемистости при ТПВ на конкретных скважинах показало, что в них достигается прирост при­нимающих интервалов на 20—30%от работающей толщины пласта в сравнении с заводнением и воздействием ХПВ. Экспериментальными исследованиями и опытно-промышленными работами на залежах установлено, что оптимальный размер оторочек горячего полимерного раствора должен составлять 15—20% от общего перового объема пласта, затем следует переходить на закачку необработанной воды (холодной или горячей). Поэтому общие затраты на рабочие агенты при ТПВ оказались меньшими против первоначально определенных расчетным путем.

Дальнейшее развитие идея комбинированного теплового и полимерного воздействия получила в новой комплексной технологии с усиленным использованием теплового фактора — это технология циклического внутрипластового полимерно-термического воздействия (ЦВПТВ), которая предусматривает чередование двухстадийных (двухэтапных) циклов закачки теплоносителя (горячей воды, пара и др.) с последующим переходом на закачку холодного раствора полимера. В результате технология имеет ряд преимуществ по сравнению с одноцикловой технологией ТПВ:

  1. повышается приемистость нагнетательной скважины, поскольку раствор полимера поступает в предварительно про­гретую зону;

  2. с использованием повышенных температур и полимерных растворов расширяется круг объектов применения технологии, и подключаются в активную разработку тонкие низкопроиицаемыс пласты;

  3. увеличивается коэффициент охвата пласта рабочим агентом по сравнению с единовременным созданием оторочки раствора полимера заданного объема;

  4. уменьшается расход тепловой энергии на осуществление процесса по сравнению с непрерывным нагнетанием рабочего агента.

Рекомендации:

  1. В дальнейшем более полно внедрять технологию термополимерного воздействия на Мишкинском месторождении;

  2. Внедрять технологию термополимерного воздействия на других месторождениях Удмуртии с такими же геолого-физическими условиями как на Мишкинском месторождении;

По возможности внедрять более совершенную технологию ЦВПТВ.

Графическая часть



Открыто в 1966 году

-425 эксплуатационных скважин

-129 нагнетательных

Залежь - нефтяная

Пласты В2+В3 верейского горизонта московского яруса

Коллектор – карбонатный, поровый

Глубина залегания – 1170м

Эффективная нефтенас. толщ. – 5,9м

Пористость – 18,7 %

Проницаемость 95 мД

Извлекаемые запасы:

  • Начальные 31,5 млн.т

  • Текущие 23,3 млн.т

Плотность по стандарту АPI

Технологическая схема

- 459 эксплуатационных скважин; - 143 нагнетательных скважин

Участки использования различных методов воздействия на Мишкинском месторождении

ЛИТЕРАТУРА


  1. Кудинов В. И., Сучков Б. М. “Интенсификация добычи вязкой нефти из карбонатных коллекторов.” – Самара, 1996г.

  2. В. И. Кудинов АО “Удмуртнефть”, Ю. В. Желтов, М. Ю. Ахапкин, Г. Е. Малофеев, В. Д. Епишин РМНТК “Нефтеотдача” – “Научное обоснование и промышленное внедрение модификаций полимерного воздействия на сложнопостроенных месторождениях Удмуртии.”

  3. Технологическая схема разработки Мишкинского месторождения нефти.

  4. Богомольный Е. И. “Интенсификация добычи высоковязких нефтей из карбонатных коллекторов месторождений Удмуртии.” –Москва, Ижевск

5. Красулин В. С. “Справочник техника-геолога”–Москва, Недра-1974г.



1   2   3   4   5


написать администратору сайта