Курсовой проект "Система сбора и подготовки газа на примере 13 укпг уренгойского месторождения" Уфа 2007 Введение
Скачать 0.72 Mb.
|
2.4 Контроль за разработкой Для контроля за изменением пластового давления произведено 2029 замеров статического давления на устье эксплуатационных и наблюдательных скважин, находящихся под давлением, при этом охват исследованиями составил 1,7 иссл./скв. Средневзвешенное пластовое давление в зоне расположения эксплуатационных скважин составляет: Уренгойская площадь 5,23 МПа; Ен-Яхинская площадь 6,47 МПа. Глубина депрессионной воронки по Уренгойской площади достигает 0,31 МПа, по Ен-Яхинской 1,72 МПа. Для определения добывных возможностей и составления технологического режима работы скважин проведено: 1) исследований по стандартной методике 424; 2) исследований без выпуска газа в атмосферу 32; 3) комплексных исследований на продуктивность: а) с отбором проб на режимах 90; б) на вынос механических примесей 636; в) глубинных замеров 110. В 1997 были продолжены работы по определению допустимых депрессий на пласт, при которых начинается разрушение призабойной зоны, проведено 54 специальных исследования. Величина предельно-допустимой депрессии колеблется от 0,16 до 0,4 МПа по зонам УКПГ и в настоящее время рабочие депрессии близки к предельным. На 1.01.98 326 скважин эксплуатируются с ограничением дебитов из-за выноса механических примесей и воды, из них 172 скважины действующего фонда работает с выносом механических примесей, 109 скважин – с выносом пластовой воды и 45 скважин – с выносом пластовой воды и механических примесей. Таким образом, на основании текущего состояния разработки сеноманской залежи Уренгойского месторождения можно сделать следующие выводы: Разработка осуществляется с отступлениями от принятых проектных решений в части отборов газа, что связано с отставанием обустройства месторождения и наложенными ограничениями на работу 326 скважин в связи с повышенным выносом механических примесей и пластовой воды. С целью выравнивания темпов подъема ГВК, области дренирования и снижения нагрузки на скважины сеноманской залежи Уренгойской площади, необходимо компенсационное добуривание эксплуатационного фонда взамен выбывающих скважин. Для ослабления процесса опережающего избирательного обводнения и уменьшения макрозащемления газа необходимо снизить отборы газа по эксплуатационным кустам с максимальным подъемом ГВК и пробурить дополнительно эксплуатационные скважины в межкустовых участках. 3. Конструкция скважин Добыча газа осуществляется через эксплуатационные скважины, которые группируются в кусты из 2–5 скважин. Основными факторами, определяющими конструкцию эксплуатационных скважин сеноманской залежи Уренгойского месторождения, являются: обеспечение надежности скважин при их сооружении и последующей эксплуатации и получение требуемого отбора газа. На месторождении принята следующая конструкция скважины: – удлиненное направление D=426 мм, Н=200 – 250 м; – кондуктор D=325 мм, Н=600 м; – эксплуатационная колонна, D=168 мм; – лифтовая колонна (НКТ), D=114 мм. Направление перекрывает многолетние мерзлые породы, которые в верхней части представлены песчаными породами, сцементированными льдом. Кондуктор должен перекрывать подмерзлотную зону, способную поглощать жидкость, заполняющую скважину при ее герметизации. Эксплуатация скважин ведется по лифтовым колоннам, спускаемым до нижних отверстий перфорации и оснащенных пакерами с надежными якорными устройствами, циркуляционными и ингибиторными клапанами. Для оборудования устья скважин используются колонные головки 324 219 или 245 168 мм, фонтанная арматура АФК-6–150/100–210 ХЛ или АФК-6–100/100–210 ХЛ и аpматуpа фиpмы «Итабаси». Регулирование отбора газа по скважинам осуществляется на основе утвержденных «Технологических режимов работы газовых скважин», которые разрабатываются и ежеквартально корректируются геологической службой УГПУ. Сбоp пpиpодного газа от кустов осуществляется по лучевой схеме с помощью системы кустовых газосбоpных шлейфов, коллектоpов. 4. Технологическая схема сбора и подготовки газа к дальнему транспорту 4.1 Общая характеристика системы подготовки газа месторождение газ транспорт геологический Для сбора газа от скважин на УКПГ-13 применена коллекторно-кустовая схема, которая позволила значительно снизить затраты на строительство шлейфов и обустройство внутри промысловых дорог. УКПГ-13 входит в комплекс действующих установок осушки газа сеноманской залежи Уренгойского месторождения. Схема сбора газа на УКПГ-13 представлена на рисунке 4.1. Подготовка газа к транспорту заключается в отделении из него газового конденсата, пластовой воды с растворенным в ней метанолом и механических примесей с последующей осушкой его диэтиленгликолем (ДЭГ). Установка осушки состоит из 6 однотипных технологических ниток, оснащенных многофункциональными аппаратами (МФА) серии ГП-502–00.000 номинальной производительностью 10 млн. м3 газа в сутки. Подготовка природного газа к транспорту осуществляется по цепочке: куст – шлейф – ЗПА – УКПГ – ДКС (I очереди) – СОГ – МПК. После пуска ДКС (II очереди) будет осуществляться следующая цепочка: куст – шлейф – ЗПА – ЦОГ – ДКС (II очереди) – УКПГ – ДКС (I очереди) – СОГ–МПК. Промысловая подготовка газа должна обеспечивать температуру точки росы по влаге Tр = минус 20°С зимой и Tр = минус 10 °С летом (согласно требованиям ОСТ 51.40–93). В период падающей добычи, в связи с ухудшающимися условиями гликолевой осушки газа на установках комплексной подготовки (падение давления, повышение температуры контакта газ – ДЭГ) становится все более проблематичным достижение требуемых показателей качества газа. Поэтому в последнее время все чаще встает вопрос об оптимизации параметров осушки газа. Рисунок 4.1 – План сбора газа на УКПГ-13 Основные характеристики и показатели УКПГ-13 производительность УКПГ-13 (согласно проекту) – 15 млрд. м3/год; количество кустов скважин – 30; количество действующих скважин – 64; общий фонд скважин – 77; осушка газа по влаге – гликолевая, концентрация гликоля 99,3%; влагосодержание газа – до 0,66 г./ст. м3; осушитель газа – диэтиленгликоль (ДЭГ); регенерация гликоля – паровая, вакуумная; ингибитор гидратообразования – метанол (СН3ОН). Узел ввода газа на установку комплексной подготовки Природный газ от скважин по шлейфам Ду = 150 с давлением Р = 5,73+5,75 МПа поступает в газовые коллекторы кустов Ду = 300, Ду = 500, по которым подается на два крыла здания переключающей арматуры ЗПА – 1, ЗПА – 2. В ЗПА осуществляется отключение кустов газовых скважин от ДКС, переключение кустов на факел, переключение узлов ввода шлейфов с куста на куст. При необходимости продувки шлейфов на факел закрывается запорный кран Ду=300 на линии подачи сырого газа в общий коллектор Ду=1000 и открывается кран Ду=3 00 на факел. В каждом крыле ЗПА находится по 7 узлов ввода шлейфов и по две панели распределения метанола (ПРМ) типа ПРГ-3, ИНГ. Здесь же производится распределение метанола по кустам газовых скважин, коллекторам кустов скважин и в факельные коллектора Ду=300. Метанол используется в качестве ингибитора гидратообразования. При транспортировке газа по шлейфам (от кустов до УКПГ) происходит его охлаждение за счет теплообмена с окружающим грунтом, а также незначительного дросселирования за счет потерь давления на трение. Поскольку газ находится в условиях полного насыщения влагой (относительная влажность 100%), при снижении температуры возможно гидратообразование, особенно в зимнее время года. Для предотвращения гидратообразования и ликвидации гидратных пробок предусмотрена централизованная система подачи метанола. Метанол подается: в шлейфы кустов; на ЗПА-1 и ЗПА-2 перед запорной арматурой; на ЗПА в факельный коллектор перед запорным краном Ду=300, Ру=110; на входы технологических ниток перед шаровыми кранами Ду=400; в коллектор сухого газа перед краном Ду=1000, Ру=80. Подача метанола в точки ввода осуществляется дозировочными насосами Н-503 со склада метанола через панели распределения метанола ПРМ, установленные на ЗПА. На пульте УВК в операторной предусмотрена сигнализация при снижении давления метанола на ПРМ ниже допустимого. В скважины на период освоения метанол вводится из расчета 1,5 кг на 1000 м3 газа в первое время работы, а в дальнейшем расход метанола определяется в зависимости от термодинамических условий в системе сбора в соответствии с расчетными нормами ингибирования. Здание переключающей арматуры расположено на расстоянии не менее 350 м от технологического корпуса. Этот разрыв предусмотрен на случай создания в технологическом корпусе аварийной ситуации. На каждом коллекторе газовых кустов на ЗПА до регулирующих штуцеров производятся замеры: – температуры газа с выводом показаний и регистрацией значений на дисплее; – давление газа с показанием и регистрацией значений на дисплее и сигнализацией понижения давления газа. Природный газ с ЗПА проходит отсечные краны Ду=300 с дистанционным управлением и собирается в общий коллектор Ду=1000, откуда через краны Ду=1000 по двум коллекторам подается на ДКС II очереди в цех очистки газа (ЦОГ). 4.3 Цех очистки газа (ЦОГ) Назначение цеха очистки – очистка газа перед первым цехом ДКС от капельной влаги и мехпримесей в соответствии с требованиями ТУ 26–12–638–82 (отсутствие капельной влаги, запыленность газа – 5 мг/м3). Установка очистки газа состоит из двух ступеней: I ступень сепарации предназначена для отделения от газа основного количества конденсата, пластовой и конденсационной воды (грубая очистка) в сепараторах ГП 554.00.000 производительностью 10–20 млн. м3/сут. (расчетное давление 6,3 МПа). II ступень – тонкая очистка газа от капельной влаги и мехпримесей в фильтрах-сепараторах ГП 605.00.00.000 номинальной производительностью 15 млн. м3/сут. (расчетное давление 7,5 МПа). Эффективность очистки газа от мехпримесей по фильтру-сепаратору составляет от 90% до 100% в зависимости от размеров частиц, по жидкости – не более 100 мг/м3 газа. Для разделения воды и газового конденсата, поступающих с I и II ступеней очистки, предусматриваются две разделительные емкости (одна рабочая и одна резервная). Из разделительной емкости вода и конденсат направляются: конденсат – на склад ГСМ на УКПГ; вода – через дегазатор на очистные сооружения, но, учитывая очень малое количество конденсата в пластовой воде, предусмотрена возможность отвода пластовой воды с конденсатом сразу в емкость дегазации или в Е-310 на УКПГ, минуя разделительные емкости. Схема цеха очистки газа представлена на рисунке 4.2. Рисунок 4.2 – Принципиальная схема ЦОГ 4.4 Осушка газа на установке комплексной подготовки После очистки газ дожимается на компрессорах типа ГПА-Ц-16 и через АВО газа по трубопроводу Ду=1000 поступает на УКПГ. Из общего коллектора газ по трубопроводам Ду=300 подается в здание технологического корпуса с 6-ю технологическими нитками на установку осушки газа в два цеха по три нитки в каждой. Все 6 технологических линий работают идентично, поэтому ниже приводится описание работы одной технологической линии. Газ с температурой T=8 20°С и давлением Р=4,4 4,6 МПа поступает через входной арматурный узел в сепаратор С-201, рисунок 4.3, из сепаратора, пройдя теплообменник Т-202, газ нагревается до температуры 17°С и поступает в нижнюю часть абсорбера. При повышении или понижении давления газа на входе в технологическую линию сигнал через ЭКМ и управляющий комплекс УВК поступает на закрытие пневмокранов на входе газа в сепаратор и выходе газа из абсорбера и открытие крана Ду=150 на факел. На рисунке 4.3 изображена принципиальная схема осушки газа. Рисунок 4.3 – Схема осушки газа На УКПГ-13 эксплуатируются многофункциональные аппараты типа ГП 502 – 00.000 проектной производительностью Qг=10 млн. м /сут. Аппарат представляет собой колонну высотой Н= 16600 мм и диаметром с=1800 мм, функционально разделенную на три секции: сепарации, абсорбции и секции улавливания гликоля. В нижней секции расположена сепарационная зона. Нижняя и средняя секции абсорбера разделены полуглухой тарелкой, служащей Для накопления, контроля и сбора НДЭГ и одновременно для прохода сырого газа в секцию осушки. Секция осушки выполнена из контактных ступеней на основе ситчатых тарелок. Над каждой из тарелок смонтирована сепарационная тарелка из центробежных элементов диаметром 60 мм. Верхняя сепарационная секция включает в себя фильтр-коагулирующие патроны и тарелку с центробежными элементами диаметром 60 мм. В соответствии с техническими предложениями ТюменНИИГипрогаза по договору №78–88 была проведена модернизация МФА по технической документации РД – 9510.73 – 86 на технические нормы 1, 2, 4, 7. Согласно модернизации (черт. ГПР 353.00.000) установлены тарелки с центробежными элементами ГПР 353.00.000 диаметром 100 мм, тангенциальные узлы входа газа с пескосъемником и отбойным листом. Массообменная секция МФА включает 4 контактных ступени, каждая из которых состоит из сетчатой тарелки с отверстиями диаметром 6 мм и сепарационной тарелки, оснащенной центробежными элементами диаметром 60 мм. Сущность модернизации МФА заключается в следующем: – верхняя сепарационная и сетчатая тарелки (5-я пара) были демонтированы. Вместо них были установлены 2 полотна тарелки для монтажа 12-ти сетчатых фильтр – барабанов (перед фильтр – патронами) диаметром 300 мм, Н=1000 мм. На барабане намотана рукавная сетка из нержавеющей стали по ТУ 26–02–354–85 толщиной 50 мм (на один фильтр-барабан необходимо 2 рулона сетки шириной 90 мм). Все 12 барабанов установлены на полотно тарелки в порядке очередности для облегчения монтажа и закреплены. Ввод гликоля с полотна 5-й тарелки был опущен в сливной карман. Такое конструктивное решение с применением сетчатых барабанов позволило снизить жидкостную нагрузку на коагулирующую секцию МФА, при этом поверхность фильтрации в 5 раз превысила свободное сечение аппарата и в 10 раз уменьшилась интенсивность забивания фильтрующего материала мехпримесями, что позволило продлить межремонтный пробег аппарата и в конечном итоге снизить потери гликоля с осушенным газом. С целью повышения пропускной способности и тем самым обеспечения нормальной работы в условиях падающего рабочего давления явилась модернизация, за основу которой был принят принцип продольного секционирования с разделением потока обрабатываемого газа на две примерно равные части, что достигается применением системы переточных труб и разделяющих перегородок. При разделении потока осушенного газа на две части соответственно сокращаются линейные скорости на контактных тарелках, а, следовательно, появляется возможность увеличить пропускную способность аппарата без существенного уноса гликоля в верхнюю фильтрующую секцию. Так как число контактных ступеней сократилось до двух, то возникла необходимость в интенсификации процесса осушки газа в массообменной части. С этой целью на каждую из четырех сетчатых тарелок был дополнительно загружен слой насадки из керамических седел типа «Инталокс» высотой 400 мм. Насадка была помещена на подложку из трех слоев сетки «Рабица» размером ячеек 25 25 мм. Причем направление навивки сетки в среднем слое было изменено, что обеспечило большую толщину подложки и меньшее перекрытие отверстий сетчатой тарелки. Чтобы обеспечить более равномерное распределение газа, переточные трубы по сечению аппарата смещены относительно друг друга. Последняя по ходу газа, секция улавливания ДЭГа (коагулирующая) состоит из перегородки, с размещенными на ней 124-мя фильтр – патронами длиной l = 1200 мм и диаметром d = 100 мм и сепарационной тарелки, аналогичной примененной в нижней сепарационной секции МФА. Все 6 технологических линий работают идентично, поэтому ниже приводится описание работы одной технологической линии. В сепарационной части абсорбера А-201, сырой газ за счет резкого снижения скорости и направления потока освобождается от механических примесей, пластовой воды с растворенным в ней метанолом и конденсата. Жидкость и мехпримеси скапливаются в нижней части аппарата, защищенной от возмущения потоком газа перегородкой из просечного листа. Уровень жидкости в сепарационной части абсорбера регулируется 2-х позиционным клапаном-регулятором с сигнализацией максимального и минимального уровня на пульте УВК. При крайне низком уровне жидкости в сепарационной части происходит закрытие отсечного клапана. Давление контролируется техническим манометром по месту, температура газа замеряется термометром сопротивления ТСМ с показаниями на УВК. Отсепарированная жидкость из абсорбера отводится через клапан-регулятор уровня через дроссельную шайбу в разделитель Е-310. В разделителе Е-310 поддерживается постоянное давление клапаном-регулятором, установленном на линии сброса газа на факел. Уровень воды измеряется УБП и через клапан-регулятор конденсат направляется на склад ГСМ в емкость Е-612. Очищенный от капельной жидкости газ, направляется через конусообразный патрубок полуглухой тарелки в массообменную секцию, где, многократно контактируя с раствором ДЭГа, осушается. Механизм осушки газа представляет собой процесс абсорбции влаги, находящейся в парообразном состоянии, концентрированным раствором диэтиленгликоля. Интенсивность контактирования достигается путем барботажа газа через слой ДЭГа на сетчатых тарелках, работающих в режиме уноса. Таким образом, осуществляется циркуляция ДЭГа внутри ступени контакта. Концентрированный ДЭГ, сливаясь вниз по тарелкам, поглощает влагу из газа, при этом сам насыщается влагой и концентрация его снижается с 99,3%. до 95,3%. Осушенный от влаги газ из массообменной секции направляется через 6 сетчатых фильтр-барабанов (описаны выше) в секцию улавливания (коагуляции), где от него отделяется унесенный капельный ДЭГ с помощью фильтр-патронов. Верхняя фильтрующая секция состоит из 124 фильтр-патронов. Патроны выполняются из перфорированной трубы, обернутой в 3 слоя металлической сеткой, затем обмотаны в 2 слоя иглопробивным нетканым полотном «Дарнит» и снова металлической сеткой. Для фиксирования патрона на тарелке по центру проходит стяжной металлический стержень, закрепляющий патрон на тарелке. Для герметичности соединения между патроном и тарелкой устанавливается резиновая прокладка. Аэрозоль и капли ДЭГа, уносимые газом, коагулируют на стеклоткани и стекают по наружной поверхности патрона на тарелку, с которой по выносному трубопроводу, врезанному в линию вывода НДЭГа, выводятся с полуглухой тарелки абсорбера. Уровень ДЭГа на полуглухой тарелке является гидрозатвором, препятствующим проходу газа по этому трубопроводу. Предусмотрен контроль перепада давления манометром в коагуляционной секции МФА с сигнализацией перепада, равного ДР = 0,04 МПа на дисплее и блокировкой на остановку насоса Н-310. Насосами Н-310 регенерированный ДЭГ подается в МФА. Регулирование производительности насосов производится посредством преобразователя ЭКТ-160. Количество регенерированного ДЭГа, подаваемого в МФА, контролируется диафрагмой с сигнализацией минимального расхода, установленной на линии подачи ДЭГа в абсорбер. Сравнение сигналов с дифманометров происходит в регуляторе, установленном в операторной. Насыщенный ДЭГ с концентрацией 95,3% весовых собирается на полуглухой тарелке абсорбера и автоматически через клапан-регулятор уровня ПОУ-8 и отсечной клапан К-203 поступает в выветриватель В-301 на установку регенерации ДЭГа. Предусмотрена сигнализация максимального и минимального уровня на полуглухой тарелке МФА. При снижении уровня ниже допустимого срабатывает блокировка на закрытие отсечного клапана. Осушенный газ после МФА последовательно проходит замерную диафрагму, клапан регулятор расхода газа, выходной запорный кран Ду = 300 и с давлением Р=4,3 4,4 МПа и температурой T=9 40°С поступает на ДКС-1 очереди по двум коллекторам Ду=1000, где дожимается до давления Р=5,6 6,0 МПа и с температурой T=21 22°С после СОГа, направляется в магистральный трубопровод. Регулирование расхода газа по технологической линии осуществляется с помощью регулирующего штуцера «Клаус» Ду=300. Давление газа после штуцера контролируется техническим манометром. Температура контролируется ртутным термометром по месту. Измерение «точки росы» по влаге производится влагомерами «Харьков-1М» типа ТТР-8. Необходимый объём подачи регенерированного гликоля в абсорбер зависит от целого ряда факторов: расхода газа, давления и температуры контакта, концентрации регенерированного гликоля, эффективности работы самого аппарата и, в конечном счете, должен определяться достижением требуемой глубины осушки газа (согласно действующего ОСТ 51–40–93). Промысловыми исследованиями установлено, что подача диэтиленгликоля в количестве 5÷7,5 кг/1000 м3 обрабатываемого газа обычно достаточна для получения требуемой ОСТом кондиции газа. |