Главная страница
Навигация по странице:

  • 4.7 Дожимная компрессорная станция

  • Список литературы

  • Курсовой проект "Система сбора и подготовки газа на примере 13 укпг уренгойского месторождения" Уфа 2007 Введение


    Скачать 0.72 Mb.
    НазваниеКурсовой проект "Система сбора и подготовки газа на примере 13 укпг уренгойского месторождения" Уфа 2007 Введение
    Дата07.10.2022
    Размер0.72 Mb.
    Формат файлаdocx
    Имя файла413544.docx
    ТипКурсовой проект
    #719283
    страница5 из 5
    1   2   3   4   5

    4.5 Установка регенерации диэтиленгликоля
    На установке комплексной подготовки газа УКПГ осушка газа производится с помощью диэтиленгликоля с концентрацией 99,3%. Применение такого раствора позволяет осушать сырой газ до точки росы минус 20°С. Исследование гигроскопических свойств гликолей показывает, что большой эффект при осушке газа дает увеличение концентрации гликолей выше 99%, но учитывая, что разложение гликолей с образованием органических кислот начинается ниже температуры их кипения, регенерацию их рекомендуется проводить при температуре не выше плюс 164 °С под вакуумом.

    Установка паровой вакуумной регенерации ДЭГа, рисунок 4.4 предназначена для регенерации насыщенного ДЭГа. Суть ее заключается в повышении концентрации ДЭГа с 96,3% вес. до 99,3% вес. Пропускная способность одной установки 17–18 м/ч. В случае, если объем циркулирующего насыщенного гликоля будет превышать максимальную производительность колонны регенерации, в работу может быть подключен резервный десорбер и испаритель или же установка регенерации ДЭГа второго технологического цеха. Ввиду идентичности установок описание работы приводится для одной из них.

    Насыщенный раствор ДЭГа с масс концентрацией 96,3–97,3%, с полуглухой тарелки абсорбера через клапан-регулятор уровня после дросселирования, с давлением 0,3 МПа поступает в общий коллектор 89x4 и далее в выветриватель В-301, где освобождается от избытка растворенного газа. Насыщенный гликоль дегазируется при давлении 0,35 МПа, выделившийся газ через свечу сбрасывается в атмосферу с помощью клапана – регулятора давления. Предусмотрена сигнализация максимального давления в выветривателе В-301. Для нормальной работы выветривателя и системы регенерации в целом, клапаном-регулятором уровня в выветривателе поддерживается определенный уровень НДЭГа. Сигнализация максимального и минимального уровней в В-301 выведена на мнемосхему и пульт УВК. Раствор насыщенного гликоля с температурой 15–16°С и давлением 0,3 МПа, пройдя один из фильтров Ф-301 (тонкой очистки), через клапан-регулятор уровня подается в трубное пространство теплообменников Т-302, где нагревается встречным потоком регенерированного ДЭГа до температуры 120–130°С. Температура НДЭГа до и после Т-302 контролируется ртутными термометрами по месту.

    После Т-302 раствор НДЭГа с температурой 120–130°С подается в десорбер Д-301 на регенерацию. Десорбер имеет 18 колпачковых массообменных тарелок и одну полуглухую тарелку, разделяющую кубовую часть колонны от выпарной.

    Раствор НДЭГа, перетекая сверху вниз с тарелки на тарелку, контактирует с восходящим паровым потоком, идущим от испарителя И-301, за счет чего происходит отпарка влаги, поглощенной раствором ДЭГа из газа, при этом раствор ДЭГа нагревается и концентрация его повышается. Согласно документации РД 9510–51–83 в десорберах Д-301 была проведена модернизация с целью снижения потерь ДЭГа с рефлюксом путем увеличения эффективности массообмена. Для этого были демонтированы две верхние контактные тарелки, технологического цеха. Ввиду идентичности установок описание работы приводится для одной из них.

    Насыщенный раствор ДЭГа с концентрацией 96,3–97,3% масс, с полуглухой тарелки абсорбера через клапан-регулятор уровня после дросселирования, с давлением 0,3 МПа поступает в общий коллектор 89x4 и далее в выветриватель В-301, где освобождается от избытка растворенного газа. Насыщенный гликоль дегазируется при давлении 0,35 МПа, выделившийся газ через свечу сбрасывается в атмосферу с помощью клапана – регулятора давления. Предусмотрена сигнализация максимального давления в выветривателе В-301. Для нормальной работы выветривателя и системы регенерации в целом, клапаном-регулятором уровня в выветривателе поддерживается определенный уровень НДЭГа. Сигнализация максимального и минимального уровней в В-301 выведена на мнемосхему и пульт УВК. Раствор насыщенного гликоля с температурой 15–16°С и давлением 0,3 МПа, пройдя один из фильтров Ф-301 (тонкой очистки), через клапан-регулятор уровня подается в трубное пространство теплообменников Т-302, где нагревается встречным потоком регенерированного ДЭГа до температуры 120–130 °С. Температура НДЭГа до и после Т-302 контролируется ртутными термометрами по месту.

    После Т-302 раствор НДЭГа с температурой 120–130°С подается в десорбер Д-301 на регенерацию. Десорбер имеет 18 колпачковых массообменных тарелок и одну полуглухую тарелку, разделяющую кубовую часть колонны от выпарной.

    Раствор НДЭГа, перетекая сверху вниз с тарелки на тарелку, контактирует с восходящим паровым потоком, идущим от испарителя И-301, за счет чего происходит отпарка влаги, поглощенной раствором ДЭГа из газа, при этом раствор ДЭГа нагревается и концентрация его повышается. Согласно документации РД 9510–51–83 в десорберах Д-301 была проведена модернизация с целью снижения потерь ДЭГа с рефлюксом путем увеличения эффективности массообмена. Для этого были демонтированы две верхние контактные тарелки,

    Необходимое разрежение 0,6 – 0,7 кг/см в испарителе поддерживается клапаном-регулятором давления на всасывающей линии вакуум-насоса Н-306 с сигнализацией величины разрежения перед аэрохолодильником Х-301 на пульт УВК.

    При снижении давления охлаждающей воды и уплотнительной жидкости к насосам Н-304 ниже допустимого значения предусмотрена блокировка на их остановку. РДЭГ из емкости Е-304 плунжерными насосами Н-310 подается в МФА. Предусмотрена блокировка насосов при падении давления до 0.

    Отделившиеся пары (вода) от раствора ДЭГа с температурой 60÷70°С при давлении 2 МПа., с верхней части десорбера через шлемовую трубу Ду=200 мм поступают в холодильник-конденсатор Х-301, где охлаждаются до температуры 30÷40°С. Сконденсировавшаяся жидкость и газы из Х-301 стекают в рефлюксную емкость Р-301. Часть сконденсировавшейся жидкости из Р-301 подается насосами Н-307 через клапан-регулятор температуры верха на орошение десорбера. Расход жидкости, подаваемой на орошение колонны, контролируется по ротаметру, установленному на линии подачи рефлюкса. Избыток жидкости из Р-301 через клапан-регулятор сбрасывается в промстоки. Минимальный и максимальный уровни в рефлюксной емкости Р-301 сигнализируются на пульт УВК. Контроль за давлением в рефлюксной емкости осуществляется по месту вакуум – манометром и выводится на пульт УВК. Температура верха десорбера поддерживается клапаном-регулятором, установленным на линии подачи орошения в десорбер.

    Установка паровой вакуумной регенерации ДЭГа цеха №1 и цеха №2 взаимосвязаны общим коллектором и могут быть, при необходимости взаимозаменяемы.

    В каждом технологическом цехе имеется узел редуцирования газа на собственные нужды с диафрагмой ДК и дифманометром ДСС-734 для замера расхода газа на собственные нужды, рисунок 4.5.

    Параметры газа на собственные нужды:

    – температура не ниже 10°С;

    – давление 0,25–0,30 МПа.


    Рисунок 4.4 – Схема расхода газа на собственные нужды
    4.6 Узел редуцирования газа на собственные нужды
    К потребителям относятся: ГРУ котельной, газ на подогрев воды в РВС-700 м3, питание пилотной горелки факела. Отбор газа на собственные нужды (на редуцирование) производится с линии осушенного и сырого газа, а также из коллектора осушенного газа после выхода из абсорбера.

    Газ, пройдя небольшой подогреватель типа «труба в трубе» Т-205, обогреваемый водяным паром, нагревается до 40°С и поступает на первую ступень редуцирования. Температура газа на выходе Т-205 контролируется ртутным термометром. Редуцирование газа происходит на клапане-регуляторе (поз. РГС 229) до давления 0,23 МПа. При этом температура редуцируемого газа понижается до 10–15 °С. Далее газ идет на подогрев в межтрубное пространство кожухотрубного теплообменника Т-201, где подогревается водяным паром до температуры 45°С, после чего проходит хозрасчетную замерную диафрагму (поз. Е-231) и идет на вторую ступень редуцирования.

    Давление газа после второй ступени редуцирования 0,30 МПа поддерживается тремя параллельно установленными клапанами-регуляторами давления (поз. Р1С – 233, НО). Температура и давление газа контролируются по месту термометрами и техническими манометрами и выводится на пульт УВК. Перед первой ступенью редуцирования установлен пневмокран, который автоматически закрывается при повышении давления за второй ступенью редуцирования. С температурой 10°С по трубопроводу Ду400 газ поступает на объекты.
    4.7 Дожимная компрессорная станция
    Дожимная компрессорная станция (ДКС) – обеспечивает необходимое давление газа перед технологическими цехами осушки УКПГ и внутри промысловый транспорт газа с необходимым давлением к головным компрессорным станциям магистральных газопроводов.

    Технологические схемы, оборудование и наименования кранов для I и II очередей компримирования идентичны, поэтому описание приводится для одной из ступеней.

    Дожимная компрессорная станция включает в себя газоперекачивающие агрегаты типа ГПА-Ц-16/56 (II очередь) – 3 штуки, ГПА-Ц-16/76 (I очередь) -3 штуки, установленные в индивидуальных укрытиях, и вспомогательные системы, установки, сооружения, обеспечивающие их функционирование:

    – система технологического газа с запорной арматурой;

    – цех очистки газа (ЦОГ);

    – установка охлаждения газа (АВО), типа 2АВГ-75;

    – блок подготовки пускового, топливного, импульсного газа (БПТПИГ);

    – система электроснабжения ДКС;

    – система автоматического управления и КИП ДКС;

    – вспомогательные системы и устройства (маслоснабжение, пожаротушение, отопление, вентиляция, сжатый воздух для технологических целей и др.).

    Компримирование газа производится полнонапорными нагнетателями с приводом от газотурбинных двигателей НК-16СТ. Нагнетатели подключены параллельно к всасывающему и нагнетательному коллекторам ДКС.

    Для обеспечения пуска и остановки ГПА, а также защиты от помпажа предусмотрены пусковые контуры у каждого агрегата и общестанционный контур. Диаметр пускового контура агрегата – Ду=400, диаметр общестанционного контура – Ду=700.

    Производительность агрегата (м /мин) можно определить в зависимости от числа оборотов и степени сжатия.

    Всасывающий коллектор при помощи крана №7 и 7а подключается к коллектору сухого газа УКПГ. От всасывающего коллектора осуществляется отбор газа к нагнетателям ГПА по трем линиям Г-700. В каждой линии Г-700 установлен кран №1. Параллельно крану №1 устанавливается кран №4 Ду=50. Перед краном №4 Ду = 50 установлен кран №4 бис Ду=50 с ручным управлением, за ним – дроссельная шайба d=30 мм. Непосредственно на входе в ГПА в линии Г-700 установлена защитная решетка. Нагнетательный коллектор имеет два закольцованных участка, между которыми включается аппарат воздушного охлаждения (АВО) газа, АВО служит для охлаждения сжатого нагнетателем газа перед подачей его в МПК до С = 10°С.

    В коллектор перед АВО подают сжатый газ нагнетателем ГПА по нагнетательным линиям. В линии нагнетания Ду=700 установлен обратный клапан. Перед обратным клапаном врезан кран №5 Ду=80 для продувки и стравливания газа из контура нагнетателя (свеча). После обратного клапана предусмотрен кран №2.

    В выходном коллекторе после АВО установлен обратный клапан, кран №8, а также врезана перемычка Ду=700 с кранами №36, 36 бис, через которую всасывающий и нагнетательный коллекторы соединяются между собой, кран №36 р (Ду=150) является обводным для кранов №36 и №36 бис.

    Кран №20 делит газопровод на части низкого и высокого давления. При перестановке кранов №7, 7а, 8, 20 можно отключить ДКС, и газ с УКПГ пойдет, минуя ДКС, в межпромысловый коллектор. Нагнетательный коллектор имеет кран №52 с местным управлением, при открытии которого газ пойдет, минуя АВО, на узел подключения, неохлажденный. В рециркуляционный коллектор Г-700 по линии Г-400 нагнетателем ГПА при закрытых кранах №2 и 5 подается газ, который циркулирует по малому кольцу. Рециркуляционный коллектор включается во всасывающий коллектор при помощи крана №66 с местным управлением.

    На линии Г-400 установлен шаровой кран №6 бис с ручным приводом, обратный клапан, после обратного клапана имеется кран №6, параллельно которому установлен противопомпажный кран №6 р.

    Технологический газ к нагнетателю отбирается с УКПГ с расчетным давлением Р=2,25÷6,4 МПа в зависимости от времени разработки месторождения и качества добываемого газа. Давление газа на выходе из нагнетателя Р=7,45 МПа (расчетное). Степень сжатия расчетная 0 = 1,44÷1,5. Температура газа на входе в нагнетатель Tвн=7÷15°С, температура газа на входе в АВО – Tва= 30÷32°С. На площадке технологического газа параллельно трем главным смонтированы вспомогательные коллекторы для нужд ГПА:

    • коллектор обогрева ВО-150;

    • коллекторы дренажные МО-100 и МД-100;

    • коллекторы импульсного газа ГИ-50 и ГИ-150;

    • коллекторы топливного газа ГТ-400;

    • коллекторы пускового газа ГП-300.

    Все коллекторы, кроме обогрева и дренажного, имеют свои свечи. В пусковой и топливный коллекторы газ подается от блока подготовки топливного и пускового газа БПТГ. Из этих коллекторов газ отводится к ГПА.

    Пусковой газ:

    • с давлением Р=0,35÷0,5 МПа;

    • с температурой T = 20°С. Топливный газ:

    • с давлением Р = 2,45÷0,02 МПа;

    • с температурой T= 25÷60 °С.

    Пусковой газ из коллектора ГП-300 по линии подачи ГП-200 подводится через фильтр к крану №11, а от него к стартеру, при помощи которого производится раскручивание ротора ВД двигателя при запуске ГПА. На этом участке пусковой линии после крана №11 установлена свеча с краном №10. Топливный газ из коллектора ГТ-400 через блок фильтров поступает к крану №12, от которого идет к блоку фильтров топливного газа, установленному непосредственно у ГПА. После крана №12 имеется свеча с краном №9. Краны №9, 10, 11, 12 и фильтры установлены в блок – боксе фильтров газа (БФГ).

    Отбор газа на собственные нужды ГПА производится из всасывающего или нагнетательного коллекторов. Отобранный газ поступает в коллектор Г-150 и далее в блок очистки газа (БО). Из БО очищенный газ идет в блок замера газа (БЗ), из которого по трубе Г-150 поступает к подогревателям БПТГ, к блоку подогрева газа регенерации БПГ. Из блока замера, газ поступает в блок осушки и хранения импульсного газа (БА). Из блока замера производится отбор газа на горелки подогревателей. По этой линии параллельно друг другу установлены редукторы и предохранительный клапан СППК-4 р-50–16, отрегулированный на давление Р=0,35 МПа.

    После подогревателей БПТГ подогретый газ по трубе Г-150 поступает в адсорбер для регенерации адсорбента. Из блока адсорбера импульсный газ подается на управление общестанционными кранами №№9, 10, 11, 12, по трубе ГИ-150 – на управление кранами №№1, 2, 4, 5, 6 гитары.

    Заключение
    Основными задачами установки являются сбор сырого газа со скважин, сепарация от капельной воды и механических жидкостей, компримирование, осушка, охлаждение и подача в МПК.

    В данном дипломном проекте был произведен технологический расчет МФА. Число тарелок удовлетворяет условиям осушки, фактическая подача ДЭГа в абсорбере соответствует расчетной, достигается необходимая точка росы, расходы по сепарационной и фильтрационной части не превышают допустимых. Гидравлическое сопротивление по аппарату не значительно.

    В массообменной секции абсорбера была внедрена регулярная пластинчатая насадка, ее высота по результатам расчетов составила 3,44 м. Поверхностью контакта является смоченная гликолем насадка, ее производительность в меньшей степени зависит от скорости потока.

    Также рассчитано распределение давления и температуры по длине гипотетического шлейфа длиной 6 км и диаметром 500 мм, моделирующего работу 4-х средних скважин в один шлейф. Снижение температуры составляет от 0,2 до 2,8 градусов на километр в зависимости от температуры воздуха. Снижение давления незначительно и составляет 0,02 МПа на 6 км. Для шлейфов есть опасность образования гидратов, требуется подача метанола.

    Произведен расчет экономического обоснования от модернизации абсорберов насадками, в 2006 на модернизацию абсорберов потребуется 8707,8 тыс. рублей, однако уже в этот год и все последующие экономия эксплуатационных затрат, за счет уменьшения уноса и экономией метанола, будет составлять 5129,3 тыс. рублей.

    На предприятии достигнут удовлетворительный уровень производственной безопасности, предлагаемые технические решения не снизят безопасность и экологичность производства.

    Список литературы
    1. Проект опытно-промышленной эксплуатации нижнемеловых отложений Уренгойского газоконденсатного месторождения – М., 1988. – 145 с.

    1. Отчет по геологии и разработке Уренгойского НГКМ за 2003-г. Н. Уренгой, 2000. – 103 с.

    2. Технологический регламент УКПГ – 13 ООО «Уренгойгазпром», 2003. – 195 с.

    3. Проблемы освоения месторождений Уренгойского комплекса: П78 Сб. науч. тр. ООО «Уренгойгазпром». – М.: ООО «Недра-Бизнес-центр», 2003. – 351 с.

    4. Гриценко А.И., Истомин В.А., Кульков А.Н., Сулейманов Р.С. Сбор и промысловая подготовка газа на северных месторождениях России. – М.: ОАО «Издательство «Недра», 1999. – 473 с.

    5. Хохлов Б.П. Абсорбер. Расчеты. ГП 502.00.000РР2. – Подольск: ЦКБН, 1988. – 40 с.

    6. Ромм В.М. Абсорбция газов. – М.: Химия, 1976. – 656 с.

    7. Технологический расчет системы абсорбционной осушки газа – Справочное пособие, Тюмень, 2002.

    8. Чеботарёв В.В. Расчёты основных технологических процессов при сборе и подготовке скважинной продукции. Уфа: УГНТУ, 2001. – 331 с.

    Ю. Жданова Н.В., Халиф А.Л. Осушка природных газов. М.: Химия, 1984. – 189 с.

    1. Гафарова З.Р. Учебно-методическое пособие по выполнению экономической части дипломных проектов, Уфа: УГНТУ, 2000. – 12 с.

    2. Ширковский А.И. Разработка и эксплуатация газовых и газоконденсатных месторождений. – М.: Недра, 1987. – 309 с.

    1. Бекиров Т.М., Ланчаков Г.А. Технология обработки газа и конденсата. М.: ООО «Недра-Бизнесцентр», 1999. – 596 с.

    2. Технический отчёт по работе оборудования систем осушки и подготовки газа УНГКМ за август 2003 г. – ООО «Уренгойгазпром», 2003. –73 с.

    3. Добыча, подготовка и транспорт природного газа. Справочное руководство в 2-х томах. Том I. Под ред. Коротаева Ю.П., Маргулова Р.Д.М.:Недра, 1984. – 360 с.

    4. Середа Н.Г., Сахаров В.А., Тимашев А.Н. Спутник нефтяника и газовика: Справочник. – М.: Недра, 1986. – 325 с.

    5. Ланчаков Г.А., Кульков А.Н., Зиберт Г.К. Технологические процессы подготовки природного газа и методы расчета оборудования. – М.: ООО «Недра-Бизнесцентр», 2000. – 279 с.

    6. Единая система управления охраной труда и промышленной безопасностью в открытом акционерном обществе «Газпром». М.: «ИРЦ Газпром», 2000.

    7. ООО «Уренгойгазпром». Инструкция по охране труда для оператора по исследованию скважин. – г. Н. Уренгой, 2001. – 11 с.
    1   2   3   4   5


    написать администратору сайта