Главная страница
Навигация по странице:

  • Эксперимент - Кот Шредингера

  • Объяснение эксперимента

  • Квентовпя механика. Квантовая механика. Квантовая механика


    Скачать 78.69 Kb.
    НазваниеКвантовая механика
    АнкорКвентовпя механика
    Дата08.04.2022
    Размер78.69 Kb.
    Формат файлаdocx
    Имя файлаКвантовая механика.docx
    ТипДокументы
    #453626

    Муниципальное общеобразовательное учреждение ….

    Индивидуальный проект

    Тема:
    «Квантовая механика»

    Автор проекта:__________________________

    Тьютер:

    Руководитель проекта:____________________

    Консультант (если есть): __________________

    г.

    20___ г.

    Оглавление




    Введение


    Классическая механика является интуитивно понятной; вещи движутся предсказуемым образом. Опытный профессиональный игрок может бросить быстрый взгляд на летящий мяч, и по его местоположению и скорости движения, узнать куда бежать, чтобы быть там как раз вовремя, чтобы поймать мяч. Конечно вдруг неожиданный порыв ветра может обмануть его, но это только потому, что он не принял во внимание все переменные величины. Существует очевидная причина, почему классическая механика является интуитивно понятной: люди (и животные до них) использовали ее много раз каждый день для выживания. Но никто и никогда не использовал квантовую механику до двадцатого века.

    Квантовая механика описывает вещи, настолько малые, что они полностью за пределами диапазона человеческих чувств. Так что само собой разумеется, что мы не развили интуицию для квантового мира. Единственный способ, которым мы можем постичь квантовый мир, состоит в замене нашей интуиции абстрактной математикой. К счастью, по какой-то странной причине, у нас имеется способность к такого рода заменам.


    Цели и задачи проекта

    В данной работе необходимо рассмотреть вопросы квантовой механики. Необходимо, на основании мысленных опытов, рассмотреть теории квантовой механики.

    Практическая значимость проекта объясняется высокой значимостью и недостаточной практической разработанностью проблемы «Квантовая механика».

    Актуальность настоящей работы обусловлена, с одной стороны, большим интересом к теме "Квантовая механика" в современной науке, с другой стороны, ее недостаточной разработанностью. Рассмотрение вопросов связанных с данной тематикой носит как теоретическую, так и практическую значимость.

    Основная часть

    1. Теоретическая часть

      1. Понятие квантовой механики


    Квантовая механика – это раз­дел тео­ре­тической фи­зи­ки, пред­став­ляю­щий со­бой сис­те­му по­ня­тий и ма­те­ма­тический ап­па­рат, не­об­хо­ди­мые для опи­са­ния фи­зических яв­ле­ний, обу­слов­лен­ных су­ще­ст­во­ва­ни­ем в при­ро­де наи­мень­ше­го кван­та дей­ст­вия h (План­ка по­сто­ян­ной). Чис­лен­ное зна­че­ние h=6,62607·10–34 Дж·с (и дру­гое, час­то ис­поль­зуе­мое зна­че­ние ℏ=h/2π=1,05457·10 –34 Дж·с) чрез­вы­чай­но ма­ло, но тот факт, что оно ко­неч­но, прин­ци­пи­аль­но от­ли­ча­ет кван­то­вые яв­ле­ния от всех дру­гих и оп­ре­де­ля­ет их основные осо­бен­но­сти. К кван­то­вым яв­ле­ни­ям от­но­сят­ся про­цес­сы из­лу­че­ния, яв­ле­ния атом­ной и ядер­ной фи­зи­ки, фи­зи­ки кон­ден­си­рованных сред, хи­мическую связь и др.
      1. История создания квантовой механики


    Ис­то­ри­че­ски пер­вым яв­ле­ни­ем, для объ­яс­не­ния ко­то­ро­го в 1900 бы­ло вве­де­но по­ня­тие кван­та дей­ст­вия h, был спектр из­лу­че­ния аб­со­лют­но чёр­но­го те­ла, т. е. за­ви­си­мость ин­тен­сив­но­сти те­п­ло­во­го из­лу­че­ния от его час­то­ты ν и температуры T на­гре­то­го те­ла. Пер­во­на­чаль­но связь это­го яв­ле­ния с про­цес­са­ми, про­ис­хо­дя­щи­ми в ато­ме, не бы­ла яс­на; в то вре­мя не бы­ла об­ще­при­знан­ной и са­ма идея ато­ма, хо­тя уже то­гда бы­ли из­вест­ны на­блю­де­ния, ко­то­рые ука­зы­ва­ли на слож­ную внут­ри­атом­ную струк­ту­ру.



    Рисунок 1 - Интерференция рентгеновского излучения (а) и электронов (б). (На рис. б приведена оригинальная фотография, полученная Дж. П. Томсоном.)

    Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна E=hν

    Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль  развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг,  и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.

    При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение  тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста. Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

      1. Уравнение Шредингера


    Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны  некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще!  Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:



    Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой. Здесь  x - расстояние или координата частицы,   m - масса частицы, E  и U  - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция  (пси) Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние. Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением!
      1. Принцип неопределенности Гейзенберга


    Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость. Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем  его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с  точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга. Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату. В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы. Математически это записывается так:



    Здесь  дельта x -  погрешность определения координаты,  дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

    2. Практическая часть



      1. Эксперимент - Кот Шредингера


    В статье в журнале Naturwissenschaften[en], опубликованной в 1935 году в ответ на работу Эйнштейна, Подольского и Розена, Шрёдингер обсуждает интерпретацию квантовой механики, в частности, физический смысл волновой функции.

    Первым делом он отбрасывает возможность, что описание частицы при помощи волновой функции отражает лишь наше незнание точных значений динамических переменных (которые тем не менее реально существуют). Далее Шрёдингер спрашивает: тогда, может быть, переменные на самом деле «размазаны» в соответствии с волновой функцией частицы? Нет, отвечает он. Окружим радиоактивный атом экраном, чувствительным к электронам. Волновая функция вылетающего при распаде электрона — сферическая волна. Однако на самом деле электрон будет попадать в одну конкретную точку экрана (хотя каждый раз в разную), а не будет равномерно «размазан» по нему.
    Можно привести и совсем безумные примеры такого рода, говорит Шрёдингер:

    Посадим кошку в стальной сейф вместе с адской машиной (защищённой от кошки). В счётчик Гейгера положена крупинка радиоактивного вещества, столь малая, что за час может распасться один из атомов, но с такой же вероятностью может не распасться ни один. Если атом распадается, счётчик через реле приведёт в действие молоточек, который разобьёт колбу с синильной кислотой. Предоставив эту систему самой себе в течение часа, мы скажем, что кошка ещё жива, если за это время не распался ни один атом. Первый же распад привёл бы к отравлению кошки. ψ-функция всей системы выразила бы это тем, что живая и мёртвая кошка (с позволения сказать) смешаны или размазаны в одинаковых пропорциях.
    Но очевидно, кошка не может быть живой и мёртвой одновременно. Таким образом, заключает Шрёдингер, мы не можем считать, что реальность действительно «размазана» в соответствии с волновой функцией.

    Этот эксперимент нравился Эйнштейну, который, как известно, никогда не принимал копенгагенскую интерпретацию квантовой механики. Он писал Шрёдингеру: «Как и прежде, так и теперь я убеждён, что волновое представление материи не есть полное представление положения вещей, хотя оно и оказалось практически полезным. Очень красиво это показывает твой пример с кошкой…»

    Объяснение эксперимента

    Согласно квантовой механике, если над ядром не производится наблюдение, то его состояние описывается суперпозицией (смешением) двух состояний — распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике, и жив, и мёртв одновременно. Если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние — «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».

    Вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное? Цель эксперимента — показать, что квантовая механика неполна без некоторых правил, которые указывают, при каких условиях происходит коллапс волновой функции, и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого.

    Поскольку ясно, что кот обязательно должен быть либо живым, либо мёртвым (не существует состояния, сочетающего жизнь и смерть), то это будет аналогично и для атомного ядра. Оно обязательно должно быть либо распавшимся, либо нераспавшимся.

    В крупных комплексных системах, состоящих из многих миллиардов атомов, декогеренция происходит почти мгновенно, и по этой причине кот не может быть одновременно мёртвым и живым на каком-либо поддающемся измерению отрезке времени. Процесс декогеренции является существенной составляющей эксперимента.
      1. Эксперимент - Квантовое самоубийство


    Квантовое самоубийство — мысленный эксперимент в квантовой механике, который был предложен независимо друг от друга Хансом Моравеком в 1987 и Бруно Маршалом в 1988 году. В 1998 году был расширен Максом Тегмарком. Этот мысленный эксперимент, являясь модификацией мысленного эксперимента с котом Шрёдингера, наглядно показывает разницу между двумя интерпретациями квантовой механикикопенгагенской интерпретацией и многомировой интерпретацией Эверетта. Фактически эксперимент представляет собой эксперимент с котом Шрёдингера с точки зрения кота.

    В предложенном эксперименте на участника направлено ружьё, которое стреляет или не стреляет в зависимости от распада какого-либо радиоактивного атома. Риск того, что в результате эксперимента ружьё выстрелит и участник умрёт, составляет 50 %. Если копенгагенская интерпретация верна, то ружьё в конечном итоге выстрелит, и участник умрёт. Если же верна многомировая интерпретация Эверетта, то в результате каждого проведенного эксперимента вселенная расщепляется на две вселенных, в одной из которых участник остается жив, а в другой погибает. В мирах, где участник умирает, он перестает существовать. Напротив, с точки зрения неумершего участника, эксперимент будет продолжаться, не приводя к исчезновению участника. Это происходит потому, что в любом ответвлении участник способен наблюдать результат эксперимента лишь в том мире, в котором он выживает. И если многомировая интерпретация верна, то участник может заметить, что он никогда не погибнет в ходе эксперимента.

    Участник никогда не сможет рассказать об этих результатах, так как с точки зрения стороннего наблюдателя, вероятность исхода эксперимента будет одинаковой и в многомировой, и в копенгагенской интерпретациях.

    Одна из разновидностей этого мысленного эксперимента носит название «квантовое бессмертие». В этом парадоксальном эксперименте предсказывается, что если многомировая интерпретация квантовой механики верна, то наблюдатель вообще никогда не сможет перестать существовать.

    Заключение


    Три четверти века назад Нильс Бор сказал: "Кто не остался в шоке от квантовой теории, тот ее не понял".

    В наше время остается только признать, что великий физик был также и великим оптимистом: по общему признанию ученых, квантовую теорию понимают всего несколько человек - те, кто посвятил ей всю жизнь. Остальные могут рассчитывать лишь на иллюзию понимания.

    Одна из главных причин непонимания правил квантовой механики - отсутствие их проявления в повседневной жизни. В то время как мы на каждом шагу сталкиваемся с практическими примерами действия законов ньютоновской (классической) механики, будь то падение яблок или торможение автомобилей, квантовые взаимодействия микроскопических частиц скрыты от нашего глаза плотной завесой макро-мира.

    Мы рассмотрели эволюцию представления человека о природе и поведении микрочастиц, основные существующие на настоящий момент постулаты квантовой механики, а также применение этих принципов в современной промышленности. Как уже не раз отмечалось выше, законы, описывающие поведение микрочастиц существенно отличаются от законов Ньютона. Во-первых, микрочастицы обладают свойствами волны и материального объекта; во-вторых, неоднозначным (вероятностным) поведением; и, в-третьих, отсутствием возможности однозначно описать все характеристики движущейся частицы с точностью до констант.






    Список литературы


    1. Г.Я.Мякишев, А.3. Синяков. Физика. Оптика. Квантовая физика. 11 класс. Учебник для углубленного изучения физики Допущено Министерством образования Российской Федерации 2-е издание, Москва, 2002

    2. Интернет - ресурс

    https://ru.wikipedia.org/wiki/Кот_Шрёдингера

    1. Интернет – ресурс

    https://ru.wikipedia.org/wiki/Квантовое_самоубийство

    1. Квантовая механика. Большая российская энциклопедия.

    Интернет – ресурс

    https://bigenc.ru/physics/text/2055887


    написать администратору сайта