Главная страница
Навигация по странице:

  • Категорически запрещается

  • ЭДС источника E2 равной 30 В.

  • Лабораторная 2. Лабораторная работа 2 Исследование линейных электрических цепей постоянного тока Цель работы


    Скачать 194.34 Kb.
    НазваниеЛабораторная работа 2 Исследование линейных электрических цепей постоянного тока Цель работы
    Дата07.05.2023
    Размер194.34 Kb.
    Формат файлаdocx
    Имя файлаЛабораторная 2.docx
    ТипЛабораторная работа
    #1113111

    Лабораторная работа №2
    Исследование линейных электрических цепей постоянного тока
    1. Цель работы:

    1. Изучение основных законов электрических цепей.

    2. Изучение и освоение методов расчета и анализа электрических цепей постоянного тока.

    3. Исследование распределения токов и напряжений в разветвленных электрических цепях постоянного тока.
    2. Содержание работы

    Лабораторная работа состоит из двух частей, т.е. проводится исследование двух разветвленных электрических цепей постоянного тока. В первом случае проводится исследование электрической цепи с одним источником электрической энергии, во втором – с двумя источниками. При домашней подготовке к работе выполняются расчеты согласно заданию, затем в лаборатории экспериментально проверяются результаты теоретического моделирования. По результатам расчетов и экспериментов строятся, согласно заданию, характеристики режимов работы цепей и потенциальные диаграммы. Анализируются полученные результаты и делаются соответствующие выводы. Такой порядок организации лабораторных работ хорошо согласуется с общепринятой практикой наладочных работ в электроустановках различного назначения.
    3. Описание лабораторной установки

    Работа выполняется на универсальном лабораторном стенде, на котором имеются все необходимые источники электрической энергии, резисторы и универсальный цифровой измерительный прибор. Первый источник постоянного напряжения, обозначенный на стенде Е1, выдает нерегулируемое напряжение порядка 17 – 25 В. Второй источник Е2 –регулируемый, выдает напряжение в пределах от нуля до 50 В.

    Все источники и элементы электрических цепей имеют надписи, соответствующие приведенным на электрических схемах методических указаний.

    Цифровой измерительный прибор позволяет измерять постоянные и переменные напряжения и токи, а также сопротивление резисторов и катушек. Измерение напряжений производится, как обычно, прикосновением двух свободных концов проводов от измерительного прибора к выходам источника или резисторов. Измерение токов – измерением напряжений на шунтах, имеющих одно и то же сопротивление 1 Ом, включенных последовательно с участком цепи, где измеряется ток.

    Шунты расположены во всех блоках стенда: у источников, в блоках резисторов, катушек и других элементов. При переходе от измерений напряжений к измерению токов, выбор рода измеряемой величины на приборе не меняется, т.е. по прежнему остается положение “V”.

    Измерив напряжение на шунте, например, 120 мВ, получим ток в шунте и соответственно в исследуемой ветви согласно закону Ома:



    Аналогично измеряют токи в других ветвях исследуемой электрической цепи независимо от рода тока постоянного или переменного.

    При необходимости измерить сопротивление постоянному току резистора или катушки, надо на приборе изменить род измеряемой величины, а именно, поставить в положение обозначающее сопротивление.

    Категорически запрещается переключать род измеряемой величины без отключения прибора от исследуемой цепи.

    Не допускается оставлять вход прибора разомкнутым на длительное время в режиме измерения постоянного и переменного напряжений и измерения сопротивления, так как это приводит к перегрузке прибора.

    4. Подготовка к работе

    Для понимания смысла выполняемой работы необходимо к ней подготовиться. При этом должны быть изучены цель, содержание, описание лабораторной установки, программа и порядок выполнения работы. Кроме этого, должно быть выполнено теоретическое моделирование экспериментов, т.е. выполнены все необходимые расчеты и графические построения по заданной программе с последующим их анализом и выводами.

    Расчеты и графические построения, выполненные при подготовке к работе, существенно помогают выполнению экспериментов, поскольку студенты уже знают ожидаемые результаты измерений. Иначе говоря,ьработа выполняется с пониманием того, что делается.

    Без указанной выше предварительной подготовки к работе студенты не допускаются к проведению экспериментов на лабораторном стенде. Это согласуется с Правилами технической эксплуатации электроустановок и с Правилами техники безопасности при эксплуатации электроустановок.

    4.1. Теоретическое исследование электрической цепи с одним источником электрической энергии

    4.1.1. Начертить схему электрической цепи, приведенную на рисунке 1.



    Рисунок 1

    4.1.2. Рассчитать токи в ветвях и напряжения на всех участках цепи (рисунок 1) для пяти различных значений регулируемого сопротивления R5k (положение переключателя k = 1, 2, 3…). Величину ЭДС E1, внутреннее сопротивление источника rвн1, а также значения всех входящих в схему сопротивлений резисторов взять из приложения.

    , , , , , , , , , .

    Расчет токов в цепи (рисунок 1) целесообразно выполнять методом эквивалентных преобразований, который иногда называют методом свертывания. При этом заданная (см. рисунок 1) электрическая цепь приводится к одному эквивалентному резистору в следующей последовательности.

    По схеме видно, что ветви с резисторами R2 и R5k соединены параллельно. Поэтому их можно заменить одним эквивалентным резистором с сопротивлением



    После такой замены схема на рисунке 1 упрощается (свертывается) и очевидно, что ветвь с резистором R1 соединяется последовательно с эквивалентным резистором Rbc. Тогда эквивалентное сопротивление их равно



    Ветвь с резистором R4 соединена параллельно с эквивалентным резистором R’ac и входное эквивалентное сопротивление цепи определится



    Ток в источнике ЭДС Е1 находится по закону Ома



    Далее расчет токов в ветвях выполняется согласно законам Ома и Кирхгофа. Напряжение Uac определяется из уравнения по второму закону Кирхгофа.



    Ток



    Ток I1 определится из уравнения по первому закону Кирхгофа для узла “а”



    Напряжение на эквивалентном резисторе Rbc



    Токи в ветвях





    Напряжение на эквивалентном резисторе Rab



    Токи в ветвях и напряжения на всех участках цепи для остальных значений регулируемого сопротивления R5k рассчитываются аналогично.

    4.1.3. Результаты занести в таблицу 1.

    4.1.4. Проверить правильность расчета токов и напряжений по законам Кирхгофа. Согласно первому закону Кирхгофа для узлов электрической цепи, имеем:

    для узла “а”



    для узла ”b”



    Согласно второму закону Кирхгофа для контура электрической цепи a–b–c–a, имеем:





    4.1.5. Построить на одном чертеже зависимости токов , , , , от величины сопротивления R5k (рисунок 2).



    Рисунок 2
    4.1.6. Для одного значения сопротивления R53 (k = 3) рассчитать мощность энергии, отдаваемой источником, и мощности энергий, потребляемых каждым резистором цепи на рисунке 1. Составить баланс мощностей.

    Мощность потребления энергии одним резистором, например, резистором R1 определяется по закону Джоуля-Ленца.











    Мощность потребления энергии всеми резисторами и шунтами



    Мощность энергии, отдаваемой источником E1.



    Правильность расчета токов определяется балансом мощностей



    Небаланс допустим не более 5%, т.е.






    4.2. Теоретическое исследование электрической цепи с двумя

    источниками электрической энергии
    4.2.1. Для цепи, приведенной на рисунке 3, выполнить расчет токов методом наложения. Принять величину ЭДС источника E2 равной 30 В.



    Рисунок 3
    Внутренние сопротивления источников rвн1 и rвн2, а также величины сопротивлений резисторов взять из приложения.

    , .

    Метод наложения основан на принципе независимости действия электродвижущих сил. Согласно этому принципу, токи, протекающие в цепи при наличии нескольких ЭДС, можно представить как алгебраическую сумму частичных токов, вызываемых каждой ЭДС в отдельности. Для определения частичных токов составляют на основании исходной схемы (см. рис. 2) частичные схемы, в каждой из которых действует только одна ЭДС. Все прочие ЭДС исключаются, однако, остаются в схеме их внутренние сопротивления.

    Расчет частичных токов I’1, I’2, I’3 при действии ЭДС E1 по схеме рисунка 4.



    Рисунок 4
    Эквивалентное сопротивление двух параллельных ветвей с резисторами R2 и R4



    Эквивалентное сопротивление всей цепи по отношению к точкам “a” и “b”



    Частичный ток I’1



    Напряжение U’da



    Частичные токи I’2 и I’3





    Расчет частичных токов I”1, I”2, I”3 при действии ЭДС E2 по схеме рисунка 5.



    Рисунок 5
    Эквивалентное сопротивление двух параллельных ветвей с резисторами R1 и R2



    Эквивалентное сопротивление всей цепи по отношению к точкам “a” и “f”



    Частичный ток I”3



    Напряжение U“da



    Частичные токи I”1 и I”2





    Расчет реальных токов по схеме рисунка 3.

    Расчет реальных токов по схеме рисунка 3 выполняется алгебраическим суммированием (наложением) частичных токов с учетом их направления на схемах рисунков 4, 5. При этом положительным направлением реальных токов является направление, выбранное и указанное ранее на исходной схеме (см. рисунок 3). Таким образом, получаем



    Здесь направление частичного тока I’1 совпадает с положительным направлением реального тока I1 на исходной схеме (см. рисунок 3), поэтому частичный I’1 берется со знаком «плюс». Частичный ток I”1 имеет противоположное направление (см. рисунок 5) и поэтому берется со знаком «минус». Рассуждая аналогично, находим два других реальных тока





    4.2.2. Рассчитать и построить отдельно потенциальные диаграммы для двух контуров a–b–c–d–e–f–a и a–b–c–d–a. Потенциал точки “d” принять равным нулю, т.е. . Вычислить напряжения на участках цепи , , .

    Для контура a–b–c–d–e–f–a (см. рисунок 3), примем потенциал точки “d” равным нулю, т.е. φd=0 и начнем обход названного контура от точки “d” по часовой стрелке, тогда получим такой алгоритм расчета:















    Аналогично выполняется расчет потенциальной диаграммы для любого замкнутого контура a–b–c–d–a.











    По известным потенциалам точек цепи нетрудно рассчитать напряжения между любыми из них как разность потенциалов







    Потенциальная диаграмма для контура a–b–c–d–e–f–a представлена на рисунке 6.



    Рисунок 6

    Потенциальная диаграмма для контура a–b–c–d–a представлена на рисунке 7.



    Рисунок 7
    4.2.3. Результаты всех расчетов по п. 4.2. занести в таблицу 2.
    5. Экспериментальная часть работы
    5.1. Исследование электрической цепи с одним источником электрической энергии
    5.1.1. Собрать схему, приведенную на рисунке 1.

    5.1.2. Измерить токи во всех ветвях и напряжения на указанных участках цепи при пяти положениях переключателя резистора R5k, начиная с первого. Измерения выполнять в порядке, указанном в табл. 1, т.е. при одном и том же положении переключателя резистора R5k сначала измеряется ток I, I1, I2 и так далее, заканчивая исследование этого режима работы цепи измерением напряжений Uac, Uab, Ubc. Прежде, чем переходить ко второму режиму работы цепи, т.е. при втором положении переключателя, необходимо проверить правильность произведенных измерений токов и напряжений согласно законам Кирхгофа. При этом должны выполняться уравнения (см. п.4.1.4):







    Такие проверки следует выполнять по окончании измерений на каждом режиме работы цепи.

    5.1.3. Результаты измерений занести в табл. 1 и сравнить их с результатами, полученными при расчете в п.4.1.2. В случае значительного расхождения результатов, найти ошибки и исправить их.
    Таблица 1 – Сравнение результатов расчета и эксперимента по схеме на рисунке 1.

    Вид исследования



















    мА

    мА

    мА

    мА

    мА

    В

    В

    В

    Ом

    Расчет

    85,824

    58,105

    51,483

    27,719

    6,622

    16,604

    6,101

    10,503



    86,764

    59,075

    50,899

    27,69

    8,176

    16,586

    6,203

    10,383



    88,287

    60,645

    49,952

    27,643

    10,693

    16,558

    6,368

    10,19



    91,125

    63,571

    48,187

    27,554

    15,384

    16,505

    6,675

    9,83



    98,608

    71,286

    43,534

    27,322

    27,753

    16,366

    7,485

    8,881



    Эксперимент

    85,824

    58,105

    51,483

    27,719

    6,622

    16,604

    6,101

    10,503



    86,764

    59,075

    50,899

    27,69

    8,176

    16,586

    6,203

    10,383



    88,287

    60,645

    49,952

    27,643

    10,693

    16,558

    6,368

    10,19



    91,125

    63,571

    48,187

    27,554

    15,384

    16,505

    6,675

    9,83



    98,608

    71,286

    43,534

    27,322

    27,753

    16,366

    7,485

    8,881




    5.1.4. По результатам эксперимента (см. табл. 1) построить на одном чертеже с теоретическими зависимостями (см. п. 4.1.5) кривые зависимостей токов ветвей I, I1, I2, I4, I5 от величины сопротивления R.

    Подписать все кривые, проанализировать их характер и сделать выводы.

    Как видно из таблицы 1, расчетные результаты и экспериментальные данные (полученные в программе симуляции электрических цепей NL5), полностью совпали, что свидетельствует о том, что расчет и эксперимент были произведены правильно. Из графика видно, что при уменьшении сопротивления R5 уменьшаются токи I5, I1 и I (значительнее всех ток I5, так как изменяется сопротивление в этой ветви. Ток I2 увеличивается, так как ветвь с этим токов включена параллельно сопротивлению R5. Ток I4 практически не изменяется.
    5.2. Экспериментальное исследование электрической цепи с двумя источниками электрической энергии

    5.2.1. Собрать схему, приведенную на рисунке 2, предварительно выставив регулятором на втором источнике ЭДС Е2 = 30 В.

    5.2.2. После проверки правильности сборки схемы включить еѐ под напряжение и измерить токи ветвей и напряжения Udc, Ude, Uda.

    5.2.3. Отключить источники ЭДС Е1 и Е2. Источник ЭДС Е2 закоротить. Включить источник ЭДС Е1. Измерить токи от действия ЭДС Е1. Результаты измерений занести в табл. 2 и сравнить их с результатами, полученными при расчете в п. 4.2.1 и 4.2.2. В случае значительного расхождения результатов, найти ошибки и исправить их.
    Таблица 2 – Сравнение результатов расчета и эксперимента по схеме на рисунке 2.

    Вид исследования

    Действует ЭДС













    мА

    мА

    мА

    В

    В

    В

    Расчет

    и

    38,781

    65,907

    27,13

    -4,072

    -16,251

    13,445



    66,065

    49,51

    16,552

    -6,937

    9,915

    10,1



    27,284

    16,397

    43,682

    2,865

    -26,166

    3,345

    Эксперимент

    и

    38,78

    65,91

    27,13

    -4,072

    -16,251

    13,446



    66,065

    49,512

    16,553

    -6,937

    9,915

    10,1



    27,285

    16,398

    43,682

    2,865

    -26,166

    3,345


    5.2.4. Отключить источник ЭДС Е1. Вернуть в схему источник Е2, а источник ЭДС Е1 закоротить. Включить источник ЭДС Е2. Измерить токи от действия ЭДС Е2. Результаты измерений занести в табл. 2 и сравнить их с результатами, полученными при расчете в п. 4.2.1 и 4.2.2. В случае значительного расхождения результатов, найти ошибки и исправить их.

    5.2.5. Снять и построить на одном чертеже (рисунок 8) зависимости токов I1, I2, I3 от величины ЭДС источника Е2 для пяти значений в диапазоне 10-50 В. Данные занести в табл. 3. Подписать кривые, проанализировать их характер и сделать выводы.
    Таблица 3

    Параметр

    Значения ЭДС Е2, В




    Е21 = 10 В

    Е22 = 20 В

    Е23 = 30 В

    Е24 = 40 В

    Е25 = 50 В

    I1, мА

    56,97

    47,875

    38,78

    29,685

    20,59

    I2, мА

    54,978

    60,444

    65,91

    71,375

    76,841

    I3, мА

    -1,992

    12,569

    27,13

    41,69

    56,251




    Рисунок 8
    Как видно из рисунка 8, при увеличении ЭДС, увеличивается ток в третьей и второй ветви.

    Ток в первой ветви, в которой включена ЭДС E1 уменьшается, так как ток I1 и ЭДС E1 направлены встречно по отношению к E2.

    5.2.6. По результатам измерения напряжений в п. 5.2.2, полагая потенциал точки «d» равным нулю, построить потенциальные диаграммы совместно с теоретическими (см. п. 4.2.2). Проанализировать их характер и сделать выводы.

    Как видно из таблицы 2, расчетные результаты и экспериментальные данные (полученные в программе симуляции электрических цепей NL5), практически совпали, и экспериментальная потенциальная диаграмма накладывается на расчетную, что свидетельствует о том, что расчет и эксперимент был произведены правильно.


    написать администратору сайта