Главная страница
Навигация по странице:

  • Лабораторная работа 8 И следование периферийных устройств и интерфейсов Учебные вопросы

  • лабораторная работа. ЛР 8-Периферийные устройства и интерфейсы. Лабораторная работа 8 и следование периферийных устройств и интерфейсов Учебные вопросы Классификация периферийных устройств


    Скачать 0.79 Mb.
    НазваниеЛабораторная работа 8 и следование периферийных устройств и интерфейсов Учебные вопросы Классификация периферийных устройств
    Анкорлабораторная работа
    Дата30.09.2022
    Размер0.79 Mb.
    Формат файлаdoc
    Имя файлаЛР 8-Периферийные устройства и интерфейсы.doc
    ТипЛабораторная работа
    #706628

    Тема 3. Периферийные устройства и узлы ЭВМ
    Лабораторная работа 8

    И следование периферийных устройств и интерфейсов
    Учебные вопросы

    1. Классификация периферийных устройств

    2. Устройства ввода

    3. Устройства вывода

    4. Интерфейсы периферийных устройств


    I. Классификация периферийных устройств
    Периферийные устройства ПК можно разделить на две группы – устройства ввода и вывода.

    Устройства ввода можно классифицировать на:

    1)Устройства ввода графической информации:

    • Сканер

    • Видео - и веб-камера

    • Цифровой фотоаппарат

    • Плата видеозахвата

    2)Устройства ввода звука:

    • Микрофон

    • Цифровой диктофон

    3) Устройства ввода текстовой информации:

    • Клавиатура

    4) Указательные (координатные) устройства:

    С относительным указанием позиции (перемещения):

    • Мышь

    • Трекбол

    • Трекпоинт

    • Тачпад

    • Джойстик

    • Видеокамера

    С возможностью указания абсолютной позиции:

    • Графический планшет

    • Световое перо

    • Аналоговый джойстик

    • Клавиатура

    5) Игровые устройства ввода:

    • Джойстик

    • Педаль

    • Геймпад

    • Руль и педали

    • Рычаг для симуляторов полёта

    Устройства вывода можно разделить на:

    1) Устройства для вывода визуальной информации

    • Монитор (дисплей)

    • Проектор

    • Принтер

    • Графопостроитель

    2) Устройства для вывода звуковой информации

    • Встроенный динамик

    • Колонки

    • Наушники

    3) Устройства ввода/вывода

    • Дисковод

    • Жёсткий диск

    • Различные порты

    • Различные сетевые интерфейсы.


    II. Устройства ввода
    Основными устройствами ввода являются клавиатура и мышь. Стандартная компьютерная клавиатура, также называемая клавиатурой PC/AT или AT-клавиатурой (поскольку она начала поставляться вместе с компьютерами серии IBM PC/AT), имеет 101 или 102 клавиши. Клавиатуры, которые поставлялись вместе с предыдущими сериями — IBM PC и IBM PC/XT, — имели 86 клавиш. Расположение клавиш на AT-клавиатуре подчиняется единой общепринятой схеме, спроектированной в расчёте на английский алфавит (раскладка QWERTY). Данная раскладка появилась во второй половине XIX века в печатной машинке «Remington No.1». Существуют и новые, более совершенные раскладки Августа Дворака, созданная в 1936 году, и раскладка Colemax (2005 год), но они пока не получили широкого распространения. Большинство клавиатур подключаются к ПК при помощи интерфейсов PS/2 и USB.

    Первая компьютерная мышь, изобретённая Дугласом Энгельбартом в Стенфордском исследовательском институте в 1963 году, состояла из двух перпендикулярных колес, выступающих из корпуса устройства. При перемещении колеса мыши крутились каждое в своем измерении. Такая конструкция имела много недостатков и довольно скоро была заменена на мышь с шаровым приводом.


    Первая компьютерная мышь
    В шаровом приводе движение мыши передается на выступающий из корпуса обрезиненный стальной шарик (его вес и резиновое покрытие обеспечивают хорошее сцепление с рабочей поверхностью). Два прижатых к шарику ролика снимают его движения по каждому из измерений и передают их на датчики, преобразующие эти движения в электрические сигналы. Следующим шагом на пути совершенствования мышей стало появление оптической мыши. Исключение механической составляющей обеспечивало более высокую надёжность и позволяло увеличить разрешающую способность детектора. В последние годы была разработана новая, более совершенная разновидность оптического датчика, использующего для подсветки полупроводниковый лазер.



    Мышь с оптическим датчиком
    В 2009 году фирмой Apple была представлена мышь Magic Mouse, являющаяся первой в мире мышью с сенсорным управлением и поддержкой технологии мультитач. Вместо кнопок, колёсиков и прочих элементов управления в этой мыши используется сенсорный тачпад, позволяющий при помощи различных жестов осуществлять нажатия, прокрутку в любом направлении, масштабирование картинки, переходы по истории документов и пр.

    Графический планшет предназначен для ввода рисунков от руки непосредственно в компьютер. Состоит из пера и плоского планшета, чувствительного к нажатию или близости пера. Также может прилагаться специальная мышь. По принципу работы и технологии существуют различные типы планшетов. В электростатических планшетах регистрируется локальное изменение электрического потенциала сетки под пером. В электромагнитных - перо излучает электромагнитные волны, а сетка служит приёмником. В обоих случаях на перо должно быть подано питание. Самым популярным производителем графических планшетов является компания Wacom.


    Графический планшет производства фирмы Wacom

    Еще одним указательным устройством ввода является трекбол. Трекбол — шарик, вращающийся в любом направлении. Движения шарика снимаются механическим (как в механической мыши) или оптическим способом (применяемым в современных трекболах). Трекбол можно рассматривать как двухмерное колесо прокрутки.

    Самым распространенным устройством ввода звука является микрофон. Основные типы микрофонов – динамические и конденсаторные. Любой микрофон состоит из двух систем: акустико-механической и механоэлектрической. Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую — прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления). Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть. Распространенные интерфейсы для подключения микрофонов – mini-jack и XLR.



    Конденсаторный микрофон
    Кратко рассмотрим основные устройства ввода графической информации.

    Ска́нер (англ. scanner) — устройство, которое, анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием. Бывают ручные (англ. Handheld), рулонные (англ. Sheet-Feed), планшетные (англ. Flatbed) и проекционные сканеры. Разновидностью проекционных сканеров являются слайдсканеры, предназначенные для сканирования фотопленок. В высококачественной полиграфии используются барабанные сканеры, в которых в качестве светочувствительного элемента используется фотоэлектронный умножитель (ФЭУ). Принцип работы однопроходного планшетного сканера состоит в том, что вдоль сканируемого изображения, расположенного на прозрачном неподвижном стекле, движется сканирующая каретка с источником света. Отраженный свет через оптическую систему сканера (состоящую из объектива и зеркал или призмы) попадает на три расположенных параллельно друг другу фоточувствительных полупроводниковых элемента на основе ПЗС, каждый из которых принимает информацию о компонентах изображения.


    Сканер
    Видеокамера — электронный киносъёмочный аппарат, устройство для получения оптических образов снимаемых объектов на светочувствительном элементе, приспособленное для записи или передачи в телевизионный эфир движущихся изображений. Обычно оснащается микрофоном для параллельной записи звука.

    Через видоискатель определяется изображаемое в кадре и производится фокусировка изображения объективом, который формирует оптическое изображение объекта на светочувствительной матрице. Видеокамеры делятся на категории:

    1)Для повседневной съёмки:

    Обычно небольших размеров и невысокого качества съёмки.

    2)Для экстремальной съёмки:

    Слабовосприимчивые к внешним воздействиям камеры, противоударные, противопыльные, подводные и другие.

    3)Для профессиональной съёмки:

    Камеры для съёмки фильмов и репортажей, обычно значительного веса, от портативных, до устанавливаемых стационарно или на рельсы. Применяются для съёмок HDTV и объёмного видеоизображения. Для подключения видеокамер к ПК широко используется интерфейс FireWire.


    Видеокамера Sony EVW-300
    III. Устройства вывода
    Основным устройством вывода звука является акустическая система. Акустическая система бывает однополосной (один широкополосный излучатель, например, динамическая головка) и многополосной (две и более головок, каждая из которых создаёт звуковое давление в своей частотной полосе). Она состоит из акустического оформления (например, «закрытый ящик» или «система с фазоинвертором» и др.) и вмонтированных в него излучающих головок (обычно динамических). Акустические системы подразделяются на пассивные (состоят только из излучателя и кроссовера) и активные (содержат также усилитель мощности).


    Четырехполосная акустическая система
    Для подключения пассивной акустической системы к усилителю обычно используют следующие типы соединений:

    • Клеммы — в основном домашние акустические системы и системы небольшой мощности

    • Разъемы типа Speakon — профессиональные системы большой мощности

    Активные акустические системы обычно подключаются к источнику звука с помощью:

    • Разъемов типа Jack 3.5 мм, RCA — компьютерные акустические системы

    • Разъемов типа Jack 6.3 мм, XLR — профессиональные акустические системы

    Рассмотрим устройства вывода графической информации.

    Проектор — световой прибор, перераспределяющий свет лампы с концентрацией светового потока на поверхности малого размера или в малом объёме. Проекторы являются в основном оптико-механическими или оптическо-цифровыми приборами, позволяющими при помощи источника света проецировать изображения объектов на поверхность, расположенную вне прибора — экран. Появление проекционных аппаратов обусловило возникновение кинематографа, относящегося к проекционному искусству.


    Современный проектор
    Принтер (англ. printer — печатник) — устройство печати цифровой информации на твёрдый носитель, обычно на бумагу. Принтеры бывают струйные, лазерные, матричные и сублимационные, а по цвету печати — чёрно-белые (монохромные) и цветные. Иногда из лазерных принтеров выделяют в отдельный вид светодиодные принтеры.

    Монохромные принтеры имеют несколько градаций, обычно 2—5, например: чёрный — белый, одноцветный (или красный, или синий, или зелёный) — белый, многоцветный (чёрный, красный, синий, зелёный) — белый. Монохромные принтеры имеют свою собственную нишу и вряд ли (в обозримом будущем) будут полностью вытеснены цветными.

    Матричные принтеры, несмотря на то, что многие считают их устаревшими, всё ещё активно используются для печати в лабораториях, банках, бухгалтериях, в библиотеках для печати на карточках, для печати на многослойных бланках (например, на авиабилетах), а также в тех случаях, когда необходимо получить второй экземпляр документа через копирку (обе копии подписываются через копирку одной подписью для предотвращения внесения несанкционированных изменений в финансовый документ).

    Получили распространение многофункциональные устройства (МФУ), в которых в одном приборе объединены принтер, сканер, копир и факс. Такое объединение рационально технически и удобно в работе. Широкоформатные (А3, А2 и более) принтеры иногда неверно называют плоттерами.


    Принтер
    Принтер может получать данные для печати по разным каналам.

    Проводные:

    • последовательный порт

    • параллельный порт (IEEE 1284)

    • Universal Serial Bus (USB)

    • через локальную сеть (LAN, NET)

    Беспроводные:

    • ИК-порт (IRDA)

    • Bluetooth

    • Wi-Fi

    Некоторые принтеры (в основном струйные фотопринтеры) оснащены узлом чтения flash карт, и/или узлом сопряжения с цифровым фотоаппаратом, что позволяет печатать фотографии напрямую, без помощи компьютера.

    Сетевые принтеры оснащены программным обеспечением в виде одного или нескольких специальных протоколов передачи данных (например, IPP), позволяющим принимать задания на печать от множества компьютеров в сети. Такое решение наиболее универсально, так как делает возможным вывод на печать из различных операционных систем, чего нельзя сказать о Bluetooth- и USB-принтерах.

    Монитор — универсальное устройство визуального отображения всех видов информации, предназначенное для вывода текстовой, графической и видео информации на дисплей. Различают алфавитно-цифровые и графические мониторы, а также монохромные мониторы и мониторы цветного изображения — активно-матричные и пассивно-матричные ЖКМ.

    По строению мониторы классифицируются на

    • ЭЛТ — на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)

    • ЖК — жидкокристаллические мониторы (англ. liquid crystal display, LCD)

    • Плазменный — на основе плазменной панели

    • Проекционный — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал)

    • OLED-монитор — на технологии OLED (англ. organic light-emitting diode — органический светоизлучающий диод)

    • Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза.




    ЭЛТ-монитор
    В настоящее время наиболее распространенными являются ЖК-мониторы. Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

    Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной.

    Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности.

    Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности).

    Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам.
    Проходящий через ячейки свет может быть естественным — отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения.

    Таким образом, полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса.


    ЖК–монитор
    Важнейшими характеристиками ЖК-мониторов являются:

    • Разрешение: горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией.

    • Размер точки: расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением.

    • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.

    • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.

    • Контрастность: отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.

    • Яркость: количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.

    • Время отклика: минимальное время, необходимое пикселю для изменения своей яркости. Методы измерения неоднозначны.

    • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.

    • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.

    • Входы: например, DVI, D-Sub, HDMI.

    Рассмотрим теперь устройства, которые являются и устройствами ввода, и устройствами вывода.

    Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard (Magnetic) Disk Drive, HDD, HMDD), жёсткий диск, винчестер – устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

    В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые, керамические или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.


    Жесткий диск
    По одной из версий, название «винчестер» накопитель получил благодаря фирме IBM, которая в 1973 году выпустила жёсткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инженеры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 МБ каждый. Кеннет Хотон, руководитель проекта, по созвучию с обозначением популярного охотничьего ружья «Winchester 30-30» предложил назвать этот диск «винчестером».

    Емкость современных жестких дисков достигает отметки в 2 Тб. Серийно выпускаемые жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, SCSI, SAS, FireWire, USB.
    IV. Интерфейсы периферийных устройств
    Интерфейс (англ. interface) — это совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил (протокола) обмена. Все множество интерфейсов для периферийных устройств можно разбить на 5 групп:

    1) Интерфейсы для подключения накопителей информации;

    2) Универсальные интерфейсы;

    3) Интерфейсы для подключения видеоадаптеров;

    4) Интерфейсы для ноутбуков;

    5) Интерфейсы для мониторов

    Рассмотрим каждую из этих групп в отдельности.

    1) Среди интерфейсов для накопителей информации можно выделить ATA, IDE, SATA, SCSI, SAS.

    ATA (англ. Advanced Technology Attachment — присоединение по передовой технологии) — параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру. В 1990-е годы был стандартом на платформе IBM PC; в настоящее время вытесняется своим последователем — SATA и с его появлением получил название PATA (Parallel ATA).

    Первоначальная версия стандарта была разработана в 1986 году фирмой Western Digital и по маркетинговым соображениям получила название IDE (англ. Integrated Drive Electronics — «электроника, встроенная в привод»). Оно подчеркивало важное нововведение: контроллер привода располагается в нём самом, а не в виде отдельной платы расширения, как в предшествующем стандарте ST-506 и существовавших тогда интерфейсах SCSI и ST-412. Это позволило улучшить характеристики накопителей (за счёт меньшего расстояния до контроллера), упростить управление им (так как контроллер канала IDE абстрагировался от деталей работы привода) и удешевить производство (контроллер привода мог быть рассчитан только на «свой» привод, а не на все возможные; контроллер канала же вообще становился стандартным

    В стандарте АТА определён интерфейс между контроллером и накопителем, а также передаваемые по нему команды.

    Интерфейс имеет 8 регистров, занимающих 8 адресов в пространстве ввода-вывода. Ширина шины данных составляет 16 бит. Количество каналов, присутствующих в системе, может быть больше 2. Главное, чтобы адреса каналов не пересекались с адресами других устройств ввода-вывода. К каждому каналу можно подключить 2 устройства (master и slave), но в каждый момент времени может работать лишь одно устройство.

    SATA (англ. Serial ATA) — последовательный интерфейс обмена данными с накопителями информации. SATA является развитием параллельного интерфейса ATA (IDE), который после появления SATA был переименован в PATA (Parallel ATA).

    Первоначально стандарт SATA предусматривал работу шины на частоте 1,5 ГГц, обеспечивающей пропускную способность приблизительно в 1,2 Гбит/с (150 МБ/с). (20%-я потеря производительности объясняется использованием системы кодирования 8B/10B, при которой на каждые 8 бит полезной информации приходится 2 служебных бита). Пропускная способность SATA/150 незначительно выше пропускной способности шины Ultra ATA (UDMA/133). Главным преимуществом SATA перед PATA является использование последовательной шины вместо параллельной. Несмотря на то, что последовательный способ обмена принципиально медленнее параллельного, в данном случае это компенсируется возможностью работы на более высоких частотах за счёт большей помехоустойчивости кабеля. Это достигается меньшим числом проводников и объединением информационных проводников в две витые пары, экранированные заземлёнными проводниками. В дальнейшием были выпущены новые стандарты SATA – SATA Revision 2.x (до 3 Гбит/с) и SATA Revision 3.x (до 6 Гбит/с), совместимые с SATA 1.x (в меньшую сторону).

    SCSI (англ. Small Computer System Interface) – интерфейс, разработанный для объединения на одной шине различных по своему назначению устройств, таких как жёсткие диски, накопители на магнитооптических дисках, приводы CD, DVD, стримеры, сканеры, принтеры и т. д. Раньше имел неофициальное название Shugart Computer Systems Interface в честь создателя Алана Ф. Шугарта. Теоретически возможен выпуск устройства любого типа на шине SCSI.

    После стандартизации в 1986 году SCSI начал широко применяться в компьютерах AppleMacintosh, Sun Microsystems. В компьютерах, совместимых с IBM PC, SCSI не пользуется такой популярностью в связи со своей сложностью и сравнительно высокой стоимостью и применяется преимущественно в серверах.

    SCSI широко применяется на серверах, высокопроизводительных рабочих станциях; RAID-массивы на серверах часто строятся на жёстких дисках со SCSI-интерфейсом (однако, в серверах нижнего ценового диапазона всё чаще применяются RAID-массивы на основе SATA). В настоящее время устройства на шине SAS постепенно вытесняют устаревшую шину SCSI.

    Serial Attached SCSI (SAS) — компьютерный интерфейс, разработанный для обмена данными с такими устройствами, как жёсткие диски, накопители на оптическом диске и т. д. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями (англ. Direct Attached Storage (DAS) devices). SAS разработан для замены параллельного интерфейса SCSI и позволяет достичь более высокой пропускной способности, чем SCSI; в то же время SAS совместим с интерфейсом SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Протокол SAS разработан и поддерживается комитетом T10. Текущую рабочую версию спецификации SAS можно скачать с его сайта. SAS поддерживает передачу информации со скоростью до 3 Гбит/с; ожидается, что к 2010 году скорость передачи достигнет 10 Гбит/с. Благодаря уменьшенному разъему SAS обеспечивает полное двухпортовое подключение как для 3,5-дюймовых, так и для 2,5-дюймовых дисковых накопителей (раньше эта функция была доступна только для 3,5-дюймовых дисковых накопителей с интерфейсом Fibre Channel).

    2) Универсальные интерфейсы.

    IEEE 1284 (порт принтера, параллельный порт, англ. Line Print Terminal, LPT) — международный стандарт параллельного интерфейса для подключения периферийных устройств персонального компьютера.

    В основном используется для подключения к компьютеру принтера, сканера и других внешних устройств (часто использовался для подключения внешних устройств хранения данных), однако может применяться и для других целей (организация связи между двумя компьютерами, подключение каких-либо механизмов телесигнализации и телеуправления).

    В основе данного стандарта лежит интерфейс Centronics и его расширенные версии (ECP, EPP). Название «LPT» образовано от наименования стандартного устройства принтера «LPT1» (Line Printer Terminal или Line PrinTer) в операционных системах семейства MS-DOS.

    USB (англ. Universal Serial Bus — «универсальная последовательная шина») — последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике. Символом USB являются четыре геометрические фигуры: большой круг, малый круг, треугольник, квадрат.

    Разработка спецификаций на шину USB производится в рамках международной некоммерческой организации USB Implementers Forum (USB-IF), объединяющей разработчиков и производителей оборудования с шиной USB.


    Символ USB
    Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства. Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания (максимальная сила тока, потребляемого устройством по линиям питания шины USB, не должна превышать 500 мА).

    К одному контроллеру шины USB можно подсоединить до 127 устройств по топологии «звезда», в том числе и концентраторы. На одной шине USB может быть до 127 устройств и до 5 уровней каскадирования хабов, не считая корневого.

    В настоящее время наиболее широко используются устройства, выполненные в соответствии со спецификацией USB 2.0. Уже появились первые устройства с поддержкой интерфейса USB 3.0, обеспечивающего теоретическую пропускную способность 480 Мбит/с.

    IEEE 1394 (FireWire, i-Link) — последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.


    Разъем FireWire 6–pin
    Различные компании продвигают стандарт под своими торговыми марками:

    • Apple — FireWire

    • Sony — i.LINK

    • Yamaha — mLAN

    • TI — Lynx

    • Creative — SB1394

    Интерфейс широко используется для подключения внешних дисковых устройств, для создания сети поверх 1394 и для подключения Mini–DV видеокамер.
    3) Интерфейсы для подключения видеоадаптеров прошли путь от шина ISA до PCI–Express 2.0.

    ISA (от англ. Industry Standard Architecture, ISA bus) — 8- или 16-разрядная шина ввода/вывода IBM PC-совместимых компьютеров. Служит для подключения плат расширения стандарта ISA. Конструктивно выполняется в виде 62-х или 98-контактного разъёма на материнской плате. Впервые шина ISA появилась на компьютерах IBM PC/XT в 1981 году. Это была 8-разрядная шина с частотой до 8 МГц и скоростью передачи данных до 4 МБайт/с (передача каждого байта требовала минимум двух тактов шины). С появлением материнских плат формата ATX шина ISA перестала широко использоваться в компьютерах.

    PCI (англ. Peripheral component interconnect, дословно — взаимосвязь периферийных компонентов) — шина ввода/вывода для подключения периферийных устройств к материнской плате компьютера.

    Стандарт на шину PCI определяет:

    • физические параметры (например, разъёмы и разводку сигнальных линий);

    • электрические параметры (например, напряжения);

    • логическую модель (например, типы циклов шины, адресацию на шине).

    Шина PCI пришла на смену ISA.

    AGP (от англ. Accelerated Graphics Port, ускоренный графический порт) — разработанная в 1997 году компанией Intel, специализированная 32-битная системная шина для видеокарты. Появилась одновременно с чипсетами для процессора Intel Pentium MMX чипсет MVP3, MVP5 c Super Socket 7. Основной задачей разработчиков было увеличение производительности и уменьшение стоимости видеокарты, за счёт уменьшения количества встроенной видеопамяти. По замыслу Intel, бо́льшие объёмы видеопамяти для AGP-карт были бы не нужны, поскольку технология предусматривала высокоскоростной доступ к общей памяти.

    Основными отличиями AGP от PCI являются:

    • работа на тактовой частоте 66 МГц;

    • увеличенная пропускная способность;

    • режим работы с памятью DMA и DME;

    • разделение запросов на операцию и передачу данных;

    • возможность использования видеокарт с бо́льшим энергопотреблением, нежели PCI

    PCI Express, или PCIe, или PCI-E (также известная как 3GIO for 3rd Generation I/O) – компьютерная шина, использующая программную модель шины PCI и высокопроизводительный физический протокол, основанный на последовательной передаче данных.

    В отличие от шины PCI, использовавшей для передачи данных общую шину, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда, устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором.

    Разработка стандарта PCI Express была начата фирмой Intel после отказа от шины InfiniBand. Официально первая базовая спецификация PCI Express появилась в июле 2002 года.

    Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X, ожидается, что PCI Express заменит эти шины в персональных компьютерах.


    Слоты PCI–Express
    Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка, называемое lane; это резко отличается от PCI, в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.

    Соединение между двумя устройствами PCI Express называется link, и состоит из одного (называемого 1x) или нескольких (x2, x4, x8, x12, x16 и x32) двунаправленных последовательных соединений lane. Каждое устройство должно поддерживать соединение x1.

    Использование подобного подхода имеет следующие преимущества:

    • карта PCI Express помещается и корректно работает в любом слоте той же или большей пропускной способности (например, карта x1 будет работать в слотах x4 и x16);

    • слот большего физического размера может использовать не все lane'ы (например, к слоту x16 можно подвести линии передачи информации, соответствующие x1 или x8, и всё это будет нормально функционировать; однако, при этом необходимо подключить все линии «питание» и «земля», необходимые для слота x16).


    В обоих случаях, на шине PCI Express будет использовать максимальное количество lane'ов доступных как для карты, так и для слота. Однако это не позволяет устройству работать в слоте, предназначенном для карт с меньшей пропускной способностью шины PCI Express (например, карта x4 физически не поместится в слот x1, несмотря на то, что она могла бы работать в слоте x4 с использованием только одного lane).

    PCI Express пересылает всю управляющую информацию, включая прерывания, через те же линии, что используются для передачи данных.

    Группа PCI-SIG выпустила спецификацию PCI Express 2.0 15 января 2007 года. Основным нововведением стала увеличенная вдвое пропускная способность – 5 Гбит/с. PCI Express 2.0 используется во всех современных материнских платах.

    4) Интерфейсы для ноутбуков.

    PCMCIA – спецификация на модули расширения, разработана ассоциацией PCMCIA (англ. Personal Computer Memory Card International Association). Широко используются в ноутбуках, модули расширения, изготовленные в соответствии с этой спецификацией обычно называются «PC-карты» (англ. PC Card). Все карты PC card имеют размер 85,6 мм в длину и 54 мм в ширину.

    Интерфейс PCMCIA породил целое поколение карт для хранения информации, использовавших flash-память: CompactFlash, Miniature Card и SmartMedia. Например, электрическая часть спецификации CompactFlash позаимствована из спецификации PCMCIA, что позволяет подключать карты CompactFlash к шине PCMCIA с помощью простейшего переходника, единственная задача которого — согласовать разъёмы.

    Ассоциацией PCMCIA подготовлен новый стандарт, призванный заменить PC Card: ExpressCard. Карты расширения стандарта ExpressCard имеют меньший размер, чем PC Card. Для подключения периферийных устройств в ExpressCard используются шины PCI Express и USB 2.0.

    5) Интерфейсы для мониторов.

    D-subminiature, или D-sub — название электрического разъёма, применяемого, в частности, в компьютерной технике. Название «субминиатюрный» было уместно тогда, когда эти разъёмы только появились, в наше же время эти разъёмы относятся к числу наибольших по размерам из используемых в компьютерах сигнальных разъёмов.


    Разъём D-Sub 15
    Разъёмы D-sub были изобретены и введены в употребление фирмой ITT Cannon, подразделением ITT Corporation в 1952 году. В принятой этой фирмой системе обозначений буква D обозначает всю серию разъёмов D-sub, а вторая буква используется для указания размера разъёма, исходя из числа стандартных контактов, которые могут разместиться внутри D-образного экрана (A = 15 контактов, B = 25, C = 37, D = 50, E = 9), после чего следует цифра, обозначающая фактическое число используемых контактов, и буква, обозначающая «пол» разъёма (M — male, «папа» , F — female, «мама», P — plug, штепсель или «папа», S — socket, розетка или «мама»). Например, DB25M обозначает разъём D-sub с экраном, вмещающим 25 контактов и фактическим числом контактов, равным 25. Контакты в этих разъёмах находятся на расстоянии 2,74 мм, а ряды находятся на расстоянии 2,84 мм.

    Наиболее широко разъёмы D-sub применяются для передачи данных по последовательному интерфейсу RS-232, хотя стандарт рекомендует, но не обязывает использовать для этих целей разъёмы D-sub. Первоначально в RS-232 использовались DB25, но, поскольку многие приложения использовали лишь часть предусмотренных стандартом контактов, стало возможно применять для этих целей 9-штырьковые разъёмы DE9.

    Digital Visual Interface, сокр. DVI (англ. цифровой видеоинтерфейс) — стандарт на интерфейс и соответствующий разъём, предназначенный для передачи видеоизображения на цифровые устройства отображения, такие как жидкокристаллические мониторы и проекторы. Разработан консорциумом Digital Display Working Group.


    DVI-разъём
    Предыдущие стандарты видеоразъёмов, например, VGA — аналоговые и изначально были предназначены для мониторов на электронно-лучевых трубках (ЭЛТ). Они передают сигнал построчно, при этом изменение напряжения означает изменение яркости. Для устройств на ЭЛТ это было нужно для изменения интенсивности луча электронов.

    Сущестует три вида DVI:

    • DVI-A — только аналоговая передача.

    • DVI-I — аналоговая и цифровая передача.

    • DVI-D — только цифровая передача.


    High-Definition Multimedia Interface (HDMI) — мультимедийный интерфейс высокой чёткости, позволяет передавать цифровые видеоданные высокого разрешения и многоканальные цифровые аудиосигналы с защитой от копирования (HDCP).

    Разъём HDMI обеспечивает цифровое DVI-соединение нескольких устройств с помощью соответствующих кабелей. Основное различие между HDMI и DVI состоит в том, что разъём HDMI меньше по размеру, интерфейс оснащён технологией защиты от копирования HDCP (High Bandwidth Digital Copy Protection), а также поддерживает передачу многоканальных цифровых аудиосигналов. Является современной (на 2009 год) заменой аналоговых стандартов подключения, таких как SCART или RCA.

    Основными разработчиками и производителями решений с поддержкой HDMI являются компании Intel, AMD, nVidia, Panasonic, Analog Devices, Texas Instruments, Broadcom, Silicon Image, STMicroelectronics, NXP Semiconductors, Analogix Semiconductor, Gennum, MStar Semiconductor, Parade Technologies, RedMere Technology, TranSwitch и Zoran.

    Самыми современными версиями данного стандарта являются HDMI 1.4 (выпущен 22 мая 2009) , в котором добавлена поддержка разрешения 2Kх4K (3840×2160 на 24/25/30Гц и 4096×2160 на 24Гц) и HDMI 1.4a (4 марта 2010) с улучшенной поддержкой стереоизображения.

    Первый в мире кабель HDMI 1.4, выпущенный компанией Cablesson 22 июня 2009 года.


    написать администратору сайта