Лабораторная работа. Микроэкономика. Лабораторная работа Студента группы 22мб571 Тарасовой Вероники Андреевны направления подготовки
Скачать 14.1 Kb.
|
Образовательная организация высшего образования (частное учреждение) «Международная академия бизнеса и новых технологий (МУБиНТ)» Лабораторная работа Студента группы №22-МБ571 Тарасовой Вероники Андреевны направления подготовки «Государственное и муниципальное управление» Вариант №1 По данным 15 однотипных предприятий известны объем производства продукции (тыс. шт.) и ее себестоимость (тыс.д.е.), приведенные в табл. Постройте модель парной линейной регрессии, оцените ее качество и рассчитайте прогноз себестоимости, если объем производства должен увеличиться на 10% от его среднего уровня.
Парная регрессия – регрессия (связь) между двумя переменными y и x, т.е. модель вида: y = f (x) + ε , где y – зависимая переменная (результативный признак); x – независимая объясняющая переменная (признак-фактор); ε – возмущение или стохастическая переменная, включающая влияние неучтенных в модели факторов. Практически в каждом отдельном случае величина y складывается из двух слагаемых: y = yˆ + ε , где y – фактическое значение результативного признака; yˆ – теоретическое значение результативного признака, найденное исходя из уравнения регрессии. Знак «^» означает, что между переменными x и y нет строгой функциональной зависимости. Различают линейные и нелинейные регрессии. Линейная регрессия описывается уравнением прямой yˆ = a + bx. Нелинейные регрессии делятся на два класса: 1) регрессии, нелинейные по объясняющим переменным, но линейные по оцениваемым параметрам, например: • полиномы разных степеней ˆ ; 3 3 2 1 2 y = a + b x + b x + b x • равносторонняя гипербола ˆ ; x b y = a + 2) регрессии, нелинейные по оцениваемым параметрам, например: степенная ˆ ; b y = ax показательная ˆ ; x y = ab экспоненциальная ˆ . a bx y e + Для построения парной линейной регрессии вычисляют вспомогательные величины ( n – число наблюдений). Выборочные средние: ∑ = = n i i x n x 1 1 и . 1 1 ∑ = = n i i y n y Выборочная ковариация между x и y : Cov(x, y) = yx − y ⋅ x или ( )( ). 1 ( , ) 1 ∑ = = − − n i i i x x y y n Cov x y Ковариация – это числовая характеристика совместного распределения двух случайных величин. |